A PERFECT ALLIANCE.

ODU-MAC[®]

Compact modular connector system. Up to 6,300 V, 20 bar, 10 GBit/s, 100,000 mating cycles and 9,0 GHz. AUTOMATIC DOCKING MANUAL MATING

ODU-MAC°

OPEN MODULAR SYSTEM

ODU-MAC®

TABLE OF CONTENTS

FEATURES

- Rugged version
- High number of mating cycles (≥ 100,000)
- Low contact resistances
- High contact stability with multiple individual contact points
- High reliability
- Enormous module variety
- Versatile solution possibilities
- High contact density
- Blind mating

APPLICATIONS

- Medical
- Industrial
- Measuring and testing
- Military and security
- Energy
- Automotive



All shown connectors are according to IEC 61984:2008 (VDE 0627:2009); connectors without breaking capacity (COC).

Tested acc. UL 1977/CSA C22.2 No. 1823. Tested acc. MIL/SAE/EIA. (ODU-USA is registered with the DDTC and able to complete ITAR restricted manufacturing projects.)

All dimensions in mm. Most of the pictures are illustrations. All data and specifications subject to change without notice.

Issue: 2015-10

THE ODU CORPORATE GROUP

PRODUCT INFORMATION

Compact modular connector system
Web configurator
Correct configuring – step by step
Automatic docking
Manual mating
The contact principle
Contact retention clip
Application specific solutions

AUTOMATIC DOCKING

Requirements on the complete system
ODU-MAC [®] S (Standard)
ODU-MAC® L (Large)
ODU-MAC® M (Mini)
ODU-MAC® P (Power)
ODU-MAC® T (Transverse)
ODU-MAC® QCH (Quick Change Head)

MANUAL MATING

Spindle locking
Lever locking
Transverse locking
Housing with IP 68/IP 69/EMC
Frame for housing
Accessories
Coding possibilities
Flexible circular connectors with ODU-MAC® inserts

MODULES

10	
	Overview
	Signal
	Power
	High current
	High voltage
	Coax
	Pneumatic and fluid model
	Fibre-optic
	Shielded implementation / high-speed connector
	Blank modules / spacer modules / coding modules / pin protection modul

TOOLS, CRIMP INFORMATION, PROCESSING INSTRU

Contact processing and crimping
Crimping tools
Tensile strength diagram for crimp terminations
Crimp information
Assembling aid
Removal contacts
Maintenance kit

TECHNICAL INFORMATION

Explanations and information according to VDE Conversions / AWG Operating voltage according to EIA-364-20D:2008 Current-carrying capacity Technical terms	International protection classes acc. IEC 60529:2013 (VDE 0470-1:201
Operating voltage according to EIA-364-20D:2008 Current-carrying capacity	Explanations and information according to VDE
Current-carrying capacity	Conversions / AWG
5 5 - 5	Operating voltage according to EIA-364-20D:2008
Technical terms	Current-carrying capacity
	Technical terms

For assembly instructions please refer to our website: <u>www.odu-connectors.com/downloads</u>.

	······ <u> </u>
	<u>12</u>
	<u>18</u>
	<u>20</u>
	<u>28</u>
	<u>30</u>
	22
	<u>32</u>
	<u>37</u>
	<u>38</u>
	<u>40</u>
	10
	<u>42</u>
	<u>57</u>
	<u>58</u>
	<u>63</u>
	70
	70 72 78 88 96
	70
	70 72 78 88 96 102 106 116
	70 72 78 88 96 102 106 116
	70 72 78 88 96 102 106 116 116 126
	70 72 78 88 96 102 106 116 116 126 132
lles	70 72 78 88 96 102 106 116 116 126
lles	20 72 78 88 96 102 106 116 126 126 132 140
	20 72 78 88 96 102 106 116 126 126 132 140
UCTIONS, ACCESSORIES	70 72 78 88 96 102 106 116 126 132 140 144
	70 72 78 88 96 102 106 116 126 132 140 144 146
UCTIONS, ACCESSORIES	70 72 78 88 96 102 106 116 126 132 140 144 146
UCTIONS, ACCESSORIES	20 72 78 88 96 102 106 116 126 132 140 140 144 146 147
UCTIONS, ACCESSORIES	20 72 78 88 96 102 106 116 126 132 140 140 144 146 147 149
UCTIONS, ACCESSORIES	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
UCTIONS, ACCESSORIES	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
UCTIONS, ACCESSORIES	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
UCTIONS, ACCESSORIES	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
UCTIONS, ACCESSORIES	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
UCTIONS, ACCESSORIES	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
UCTIONS, ACCESSORIES	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
UCTIONS, ACCESSORIES	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
UCTIONS, ACCESSORIES	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
UCTIONS, ACCESSORIES	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
UCTIONS, ACCESSORIES	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
UCTIONS, ACCESSORIES	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
UCTIONS, ACCESSORIES	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
UCTIONS, ACCESSORIES	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
UCTIONS, ACCESSORIES	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} 20\\ \\ \\ \\ \\ \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $
UCTIONS, ACCESSORIES	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $

A PERFECT ALLIANCE.

CREATING CONNECTIONS, BUILDING ALLIANCES, COLLABO-RATING INTO THE FUTURE: WHETHER TWO TECHNICAL COM-PONENTS COME TOGETHER TO FORM A UNIT OR PEOPLE COME TOGETHER TO STRIVE FOR GREAT RESULTS – THE KEY IS TO ASPIRE IN ACHIEVING SUPERB RESULTS. THIS GOAL DRIVES OUR WORK. **PERFECT CONNECTIONS THAT INSPIRE AND DELIVER ON THE PROMISES.**

ODU WORLDWIDE

ODU USA

ODU Scandinavia

ODU Denmark

ODU GROUP OVERVIEW

- More than 70 years of connector experience
- €146 million^{*} in turnover
- Over 1,650 employees worldwide
- 9 sales subsidiaries: China, Denmark, France, Germany, Italy, Japan, Sweden, the UK and the US
- All technologies under one roof: Design and development, machine tool and special machine construction, injection, stamping, turning, surface technology, assembly and cable assemblu
- *As of February 2016

ODU Germany Headquarters ODU Japan ODU Japan

ODU Italia ODU France ODU UK

CERTIFIED QUALITY

- DIN EN ISO 9001
- DIN ISO TS 16949
- DIN EN ISO 14001
- ISO 13485
- Wide range of UL, CSA, VG and DVA licenses
- UL-certified cable assembly

For a complete list of our certifications, please visit our website.

INGENIOUS IDEAS PERFECT SOLUTIONS

ODU'S PRODUCT PORTFOLIO.

COMPACT MODULAR CONNECTOR SOLUTION

- The highest packing density with flexible modular construction
- 6 standard docking solutions
- Multitude of data transmission modules
- Spindle locking / quick-release connector
- Springwire technology and more than 100,000 mating cycles
- Blind mating

6

PUSH-PULL CIRCULAR CONNECTORS

- Circular connector series in robust metal or plastic housing
- Contacts for soldering, crimping and PCB termination
- With Push-Pull locking mechanism for a secure connector
- 2 up to 55 contacts
- IP 50 to IP 69
- Autoclavable for medical applications

SINGLE CONTACTS

- Versatile connector technologies
- More than 100,000 mating cycles (patented springwire technology)
- Reliable transmission of power and signal
- High level of vibration resistance
- with low wear
- Up to 2,000 A current-carrying capacity
- Low transition resistance

HIL STRUCT

HEAVY-DUTY & DOCKING AND ROBOTIC CONNECTOR SOLUTIONS

- Extremely durable even under extreme / harsh environments
- Interference-free and secure connection, even under vibration
- Up to 1,500 A current-carrying capacity
- · High contact security due to the springwire technology
- High pin density due to a minimum contact diameter
- Low transition resistance

under one roof

+ Versatile connector solutions for transmission of power, signals, data, or media – ODU never fails to offer the right interface when quality and absolute reliability are the top priorities.

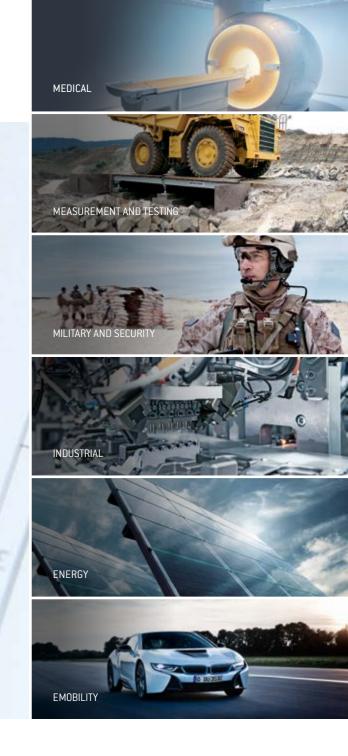
CUSTOMER-SPECIFIC SOLUTIONS

- Contacts, connectors and assemblies for the highest technical requirements as well as special applications
- First-class implementation expertise
- High level of vertical manufacturing –
- all competences and key technologies
- Expert advice based on mutual partnership • Fast development and production

CABLE ASSEMBLY

- Extensive expertise in cable assembly integrated solutions
- Cutting-edge production facilities at all ODU production sites, including testing laboratory
- Custom-assembled connectors, assembly with heat shrunk parts and insert-molding assemblies
- Soldering and crimping technology, testing included
- Special assemblies (grouting, pressure testing)
- Prototype production

HIGH PERFORMANCE CONNECTOR TECHNOLOGY FOR DEMANDING KEY MARKETS


Customers rely on ODU technology wherever first-class, high-performance connector solutions are required. All our skills go into our products to ensure your success. In addition to the top quality, reliable stability and maximum flexibility in customer-specific requirements, our products also stand for dynamics, reliability, safety, precision, efficiency and sustainability. And they guarantee unrestricted functionality for the final product due to our high quality connectors. ODU – A PERFECT ALLIANCE.

APPLICATION-SPECIFIC SOLUTIONS

Demands that can't be pigeon-holed call for creative specialists who think outside the box. ODU offers the type of expertise that focuses solely on the specific requirements of our customers. For every development order we get, we not only perform a thorough check to make sure it's feasible, we intensively incorporate our customers in the ongoing design process. This guarantees an impressive, custom-fit final result. Our solutions are frequently based on the modifications of our products, especially for the ODU MINI-SNAP and ODU-MAC connectors.

HIGH LEVEL OF VERTICAL INTEGRATION

ODU combines all the competences and key technologies for the connector manufacturing. These include design and development, machine tool and special machine construction, injection, stamping, turning, surface technology, assembly and cable assembly and our own test laboratory.

INDIVIDUAL CABLE ASSEMBLY

Our production skills together with our cutting edge production facilities from Europe, China and the USA enable us to deliver to our customers local tested assemblies and also global ones.

CONFIGURE THE ODU-MAC[®]. SIMPLY ONLINE AT <u>WWW.ODU-MAC.COM</u>

PRODUCT INFORMATION

Compact modular connector system
Web configurator
Correct configuring – step by step
Automatic docking
Manual mating
The contact principle
Contact retention clip
Application specific solutions

	<u>12</u>
	<u>14</u>
	<u>16</u>
	<u>18</u>
	<u>20</u>
	<u>24</u>
	<u>28</u>
	<u>30</u>

ODU-MAC[®] – A UNIVERSAL TALENT FOR THE MOST VARIED APPLICATIONS

THE INTELLIGENT PATH TO INDIVIDUAL CONNECTION

The flexible modular design of ODU-MAC enables the combination of a variety of connection types within single contacts. Whether signal, power, high current, high voltage, coax, high-speed data transmission, fibre optic and other media such as air or fluid – all types can be selected from the module and integrated into the individual connector solution. The connection options are just as versatile.

Many options are available for a variety of applications in industry or medical technology: for example, installation in the stable frame for rack and panel applications or for automatic docking, or the version in the robust housing.

The result is an effective, compact and attractive complete connection that cannot be beaten in terms of functionality. Confusion caused by many connections is a thing of the past – an ODU-MAC assembled for the relevant requirements is the solution of today.

ODU-MAC is available in two basic versions. You have a choice between a flexible adjustable aluminium frame for automatic docking and the version in the housing for manual mating.


You can find out more about individual configurations on the following pages.

MANUAL MATING

AUTOMATIC DOCKING

LEAVES NOTHING TO BE DESIRED:

- Up to 100,000 mating cycles and more
- Versions in the docking frame for automatic docking
- Versions for robust housing suitable for use in tough environments or for manual mating
- · Easy locking of the housing with spindle or lever
- Many different module options available
- Extremely compact due to the high contact density

ODU-MAC[®] MODULE CONSTRUCTION

PRODUCT INFORMATION

ODU-MAC[®] WEB CONFIGURATOR

Individual configuration of your ODU-MAC° connection.

With ODU-MAC web configurator it's possible to configure your connection simply according to your requirements. The configurator guides you through the different choices step by step and offers many continuative information. There are two ways to the ODU-MAC web configurator:

1. ACCESS: THROUGH WWW.ODU-CONNECTORS.COM

Entry via <u>www.odu-connectors.com</u> provides you with a great deal of product information and many application examples prior to configuration of your ODU-MAC.

Access to the configurator via the product category Modular Connectors.

2. ACCESS: DIRECTLY THROUGH WWW.ODU-MAC.COM

PRODUCT VIDEOS ON FUNCTIONALITY

Table of Content

PRODUCT INFORMATION

www.odu-mac.com takes you directly to the configuration spacer, allowing you to start assembling your ODU-MAC immediately.

Videos explaining the functions of automatic docking and manual mating can be found under Explanation on the welcome page of the configurator at www.odu-mac.com.

YOUR WAY TO AN INDIVIDUAL CONNECTION

How to configure your ODU-MAC°.

INDIVIDUAL REQUIREMENTS - INDIVIDUAL CONFIGURATION

With ODU-MAC, we offer a modular connector system configured to your requirements. This means that you always receive the appropriate hybrid connection.

SELECT & REQUEST OFFERS

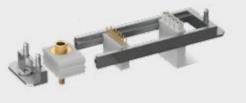
You will receive a drawing and a detailed offer within one working day of submitting your request. When placing an order you will receive the complete article number for connections preassembled by ODU (contacts supplied as accompanying loose items). We ask you to enquire directly about customised versions not covered by the standard.


For information to the configuration of your connector please refer to our website: www.odu-mac.com

AUTOMATIC DOCKING

1ST STEP: FRAME SELECTION

Depending upon your requirements, you can choose 6 different frame types as a base for automatic docking.


Frames	
ODU-MAC [®] S (Standard)	ODU-MAC® T (Transverse)
ODU-MAC® L (Large)	ODU-MAC® P (Power)
ODU-MAC® M (Mini)	ODU-MAC® QCH (quick change head) (connector saver)

2ND STEP: MODULE SELECTION

Choose from 34 different modules for transferring signal, power, high current, high voltage, coax, high-speed data transmission, fibre optic and other media such as air or fluid and assemble your ODU-MAC individually.

Modules	
Signal	Power
High current	High voltage
Coax	Pneumatic and fluid model
Fibre-optic	Shielded implementation / high-speed connector
Blank modules / spacer modules / coding modules / pin protection module	

MANUAL MATING

1ST STEP: LOCKING

Select the type of lock in this first step. You have the choice between lever and spindle locking.

Spindle locking Lever locking

2ND STEP: CONNECTOR HOUSING

Depending upon the lock, choose the housing suited to your requirements. The following housings are available:

For spindle locking	For lever locking
Cable hood	Cable hood
Cable hood XXL	Cable hood XXL
	Cable hood wide

3RD STEP: RECEPTACLE SELECTION

Depending upon the requirements for the receptacle and the selected connector housing, a wide variety of designs is available.

Cable hood	Cable hood XXL
Bulkhead mounted housing	Bulkhead mounted housing
Surface mounted housing	Surface mounted housing
Cable to cable hood	

4TH STEP: MODULE SELECTION

Choose from 34 different modules for transferring transferring signal, power, high current, high voltage, coax, high-speed data transmission, fibre optic and other media such as air or fluid and assemble your ODU-MAC individually.

Modules	
See page <u>70</u>	

PRODUCT INFORMATION

YOUR PARTNER FOR AUTOMATIC DOCKING SOLUTIONS

Overview of docking frames.

ODU-MAC in the docking frame is used only for automatic docking. Choose from a variety of different frames, adjust the length individually and assemble the frame with the modules you need for your requirements.

With ODU-MAC you can always find the perfect solution. And should your requirements for a connection go beyond the standard solutions, we also offer customised special solutions.

ODU-MAC is configured for 3 to 60 grid units (more upon request), meaning that up to 600 contacts can be installed when the 10 contacts module with a module width of 2.54 mm (1 unit) is used. Versions for limited space (ODU-MAC M (Mini)), increased requirements for floating support (ODU-MAC L (Large)) and increased mechanical load (ODU-MAC P (Power)) are also available.

FURTHER INFORMATION FROM PAGE 32.

ODU-MAC[®] S (STANDARD) P. 36 Standard solution for docking tasks. Tolerance compensation +/- 0.6 mm.

ODU-MAC[°] L (LARGE) P. 37

Frame with higher tolerance compensation and reinforced guiding bushes, as well as extended guiding pins. Tolerance compensation +/- 1.2 mm.

The length of the frames can be ordered individually depending upon the number of modules.

ODU-MAC[®] M (MINI) P. 38

Compact size with the smallest space requirement and low tolerance compensation.

ODU-MAC[°] T (TRANSVERSE) P. 40

Transverse frames for installation in customised housing solutions or where low clearance heights make this necessary.

ODU-MAC[°] P (POWER) P. 39

The frame for the highest requirements thanks to reinforced frame design. Tolerance compensation +/- 2.5 mm.

ODU-MAC[®] OCH (QUICK CHANGE HEAD) P. 41

Docking frames for the highest requirements with regard to mating cycles (connector saver) with the lowest maintenance time and expense thanks to easy exchange of the replacement parts.

Tolerance compensation +/- 0.6 mm.

BEST CONNECTIONS FOR MANUAL MATING

Overview of housings with spindle locking.

In the case of spindle locking, the housings can be equipped with an easy to operate precision locking spindle. This spindle enables easy closing and opening of the housing with a single turning movement. The mating and sliding forces overcome in this way ease handling significantly. Only 5 units of space are required for this purpose.

Especially in case of high connection frequency and limited space for locking, the use of precision locking is a preferred option.

Depending upon the application scenario, the mechanisms are designed for up to 30,000 locking cycles. Easy to mount replacement sets are available for larger numbers of mating cycles (see page <u>45</u>).

FURTHER INFORMATION FROM PAGE 44.

- Low profile less space for operation than lever latching
- Ease of use one hand operation
- Ergonomic design easy single spindle knob
- Improved reliability preferred designed for high mating cycles
- Fully enclosed internal mechanism prevents damage
- **Repairable** can be replaced without removal of the hood or frame
- User friendly lower force required for operation
- Precision materials, design and tolerances assist the life of contacts over time

¹5 units of space required for spindle

FULLY COMPATIBLE

BULKHEAD MOUNTED HOUSING P. 48 For mounting on device with spindle locking.

CABLE HOOD XXL P. 47 WITH SIDE M50 CABLE ENTRY

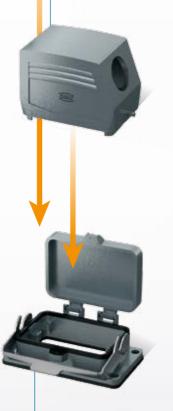
Connector housing with expanded assembly space and side M50 cable entry.

SURFACE MOUNTED HOUSING P. 49

For surface mounting on your device/wall with spindle locking and two side cable entries.

BEST CONNECTIONS FOR MANUAL MATING

Overview of housings with lever locking.


ODU-MAC with lever locking offers a wide variety of combination possibilities for manual mating. With the exception of the dual housing, all housings can be combined with one another.

Appropriate frames in various sizes are available for use in the standard DIN EN 175301-801:2007 housing with lever. Size 4, for example, can receive up to 34 modules with a module width of 2.54 mm (1 unit), meaning that a total of 34 modules (34 units), or 340 contacts in the case of 10 contacts, can be accommodated. Size 6 of the dual housing can even accommodate up to 680 contacts.

FURTHER INFORMATION FROM PAGE 50.

CABLE HOOD WIDE WITH TOP CABLE ENTRY P. 54 Connector housing for double frame assembly.

CABLE HOOD WIDE WITH SIDE CABLE ENTRY P. 54 Connector housing for double frame assembly.

BULKHEAD MOUNTED HOUSING FOR CABLE HOOD WIDE P. 55 For mounting on your device with lever locking. CABLE HOOD WITH TOP CABLE ENTRY P. 50 Connector housing for assembly on the cable.

CABLE HOOD WITH SIDE CABLE ENTRY P. 50 Connector housing for assembly on the cable.

FULLY COMPATIBLE

without cover).

Units			
10			
16			
24			
34			
34			
CABLE HOOD WIDE:			
48			
68			
	10 16 24 34 34 34		

CABLE HOOD XXL WITH TOP M50 CABLE ENTRY P. 51

Connector housing with expanded assembly space. For assembly on the cable.

CABLE HOOD XXL WITH SIDE M50 CABLE ENTRY P. 51

Connector housing with expanded assembly space. For assembly on the cable.

SURFACE MOUNTED HOUSING P. 53 For surface mounting on your device/ wall with two side cable entries (with and

CABLE TO CABLE HOOD P. 56

For a flying cable to cable connection with lever locking and top cable entry.

BEST CONNECTIONS – THE CONTACT PRINCIPLE

ODU contacts fulfil the highest quality standards and enable secure and reliable connections. ODU has the highest performance contact technologies at its disposal. Principally, a differentiation of lathe-turned contacts is made between lamella, springwire and slotted contacts. The socket side differ in architecture, but the pins are always the same and always solid.

ODU SPRINGTAC® Contacts with springwire technology.

The ODU SPRINGTAC is the most effective contact system on the market. Constant transfer is always guaranteed thanks to the large number of individual, independently flexible springwires. Even with the smallest contact diameter of \emptyset 0.76 mm, 15 individual springs are still installed, meaning that even this small diameter provides 15 contact surfaces for current transfer. Correspondingly more for larger diameters.

Standard contact principle for:

14 to 5 contacts

4 to 2 contacts

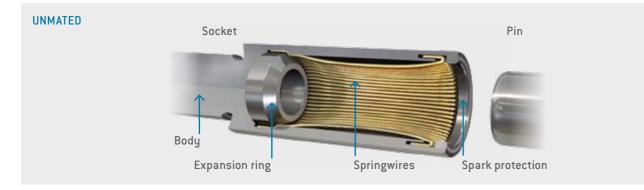
2 contacts

4 contacts

2 contacts

8, 5, 4 contacts

Signal


Power

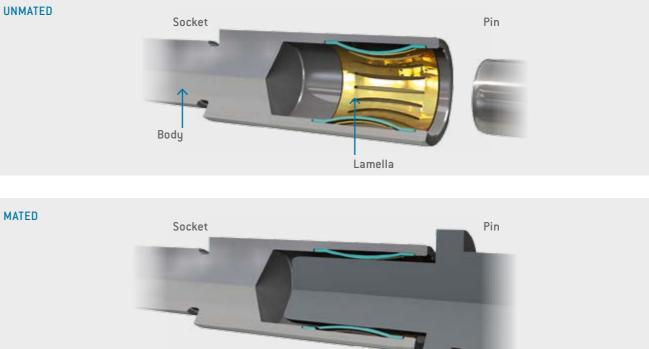
Coax

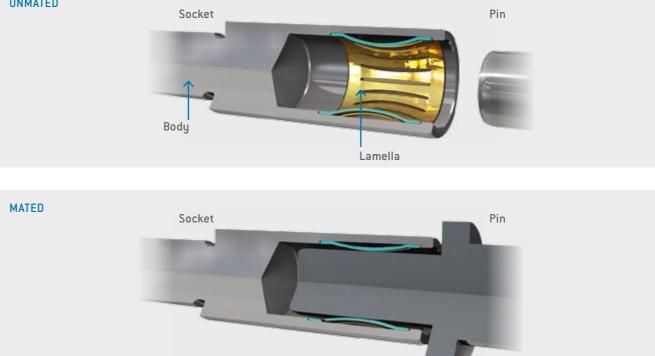
High current

High voltage

Shielded implementation

Socket Pin


ADVANTAGES


MATED

- Greater than 100,000 mating cycles
- (up to 1 million mating cycles can be achieved)
- High current-carrying capacity surge current capacity
- Low contact resistances
- Large number of independently flexible contact springs, e.g. 40 springs with a diameter of 5 mm
- Low mating and unmating forces
- Extremely secure connection
- High vibration and shock resistance
- Long service life thanks to high quality materials and plating
- Many styles and termination types available or can be customised
- Individual contacts upon request

The ODU LAMTAC contact consists of a lathe-turned body in which one or more stamped lamella strips are mounted. The individual bars of the lamella provide numerous contact points which guarantee high contact reliability and optimum conductive

ADVANTAGES

- Over 10,000 mating cycles
- High current-carrying capacity surge current capacity
- Low contact resistances
- Low mating and unmating forces
- Secure connection
- High vibration and shock resistance
- Long service life thanks to high quality materials and plating
- Many styles and termination types available or can be customised
- Economical alternative to springwire contacts
- Individual contacts upon request

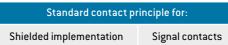
properties. The adapted contact force ensures low mating and unmating forces, and a long service life with low wear. The mating cycles here are minimum 10,000.

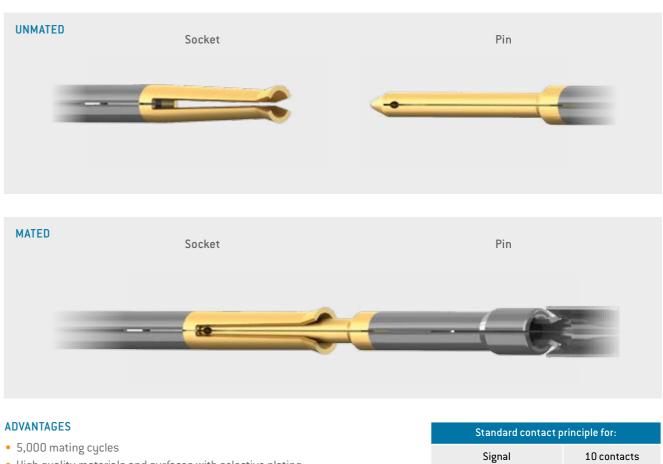
Standard contact principle for:		
High current	2 to 1 contact(s)	
High voltage	1 contact	
Coax	4 contacts	
Shielded implementation	Shielded transmission	

ODU TURNTAC® Contacts in slotted version.

ODU TURNTAC has two contact surfaces between the pin and the socket. Slotted contacts are used in many ODU mating systems. For mating cycles of 5,000 and more, this contact technology offers the best quality at economical prices. This contact is often used for standard requirements. It provides

good contact resistances and high current-carrying capacity, but only limited potential in terms of number of mating cycles and forces. Slotted contacts are mostly used for smaller diameters (up to approx. 3 mm) in the context of complete connectors.


ODU STAMPTAC® Contacts in stamped version.

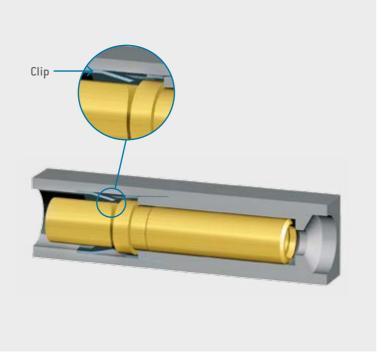

Thanks to its economical manufacture, the ODU STAMPTAC is the most affordable alternative for large numbers of units. Available in various coil sizes for processing with hand

ADVANTAGES

- 5,000 mating cycles
- Economical solution
- The smallest dimensions are possible
- High quality materials and plating
- Individual contacts upon request

- High quality materials and surfaces with selective plating
- Most affordable alternative for large numbers of units
- Cost-effective processing
- Automatic processing from tape reel possible

crimpers and (semi-)automatic stripper crimpers. This reduces the preparation time enormously. This contact is used in the 10 contacts module (see page 82/83).


CONTACT RETENTION CLIP (STANDARD)

FOR YOUR NOTES

The adjacent photo shows how the contact is fixed in the insulator. The contact is pushed from the termination area (rear insertion) into the insulator and locked in by a metal clip (barbed hook) snapping behind a flange. The contacts can be easily removed again at any time with a removal tool.

Compared with permanent connections, crimp technology allows replacement of contacts and easy repair. Voltage values can be increased by leaving contact positions free. Contact assembly can be performed independently of the insulator.

Not all modules are equipped with the clip principle, but removal is possible. 10 position module does not have a removable contact system.

Most of the modules include this fastening technology.

Table of C

PRODUCT INFORMATION

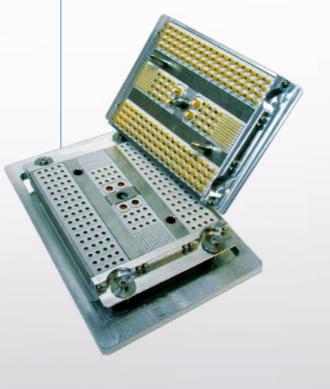
APPLICATION SPECIFIC SOLUTIONS

Problem solvers who think outside the box are required when standard solutions find their limits. ODU offers you just this kind of expert: the ones who focus on your specific requirements. For every development order we get, we not only perform a thorough review study, we intensively involve our customers in the ongoing design process. This guarantees an impressive, custom-fit final result. Our standard connectors are frequently the base for custom modifications.

FOR INDUSTRIAL

FOR MEDICAL

MONOBLOC INSULATOR


Customers install this insulator block, equipped with standard ODU-MAC contacts, into its own custom housing.

COMPLETE DOCKING UNIT

Three ODU-MAC rows incl. spindle locking are mounted in a special stainless steel frame.

Advantages

• Special floating support with tolerance compensation +/- 3 mm

MANUAL MATING

Well-known manufacturers worldwide trust in the ODU-MAC system as a reliable connector between the various patient coils and the MRI device. In addition to increased ease of operation, the connector is also available in a version with non-magnetic materials.

Advantages

- Non-magnetic version, e.g. for MRI application
- Plastic sleeve housing with individual monobloc
- Customised contact configuration possible
- Spindle locking
- Minimum 30,000 mating and locking cycles

ODU-MAC° FOR SHOCK WAVE THERAPY DEVICE

ODU-MAC is used in this innovative therapy device as a secure connection between the therapy device and the applicator. The sophisticated assembly has also been adopted by ODU.

Advantages

- Compact size
- Motor-operated spindle locking
- Drip-tight fluid routing
- Customised high voltage module

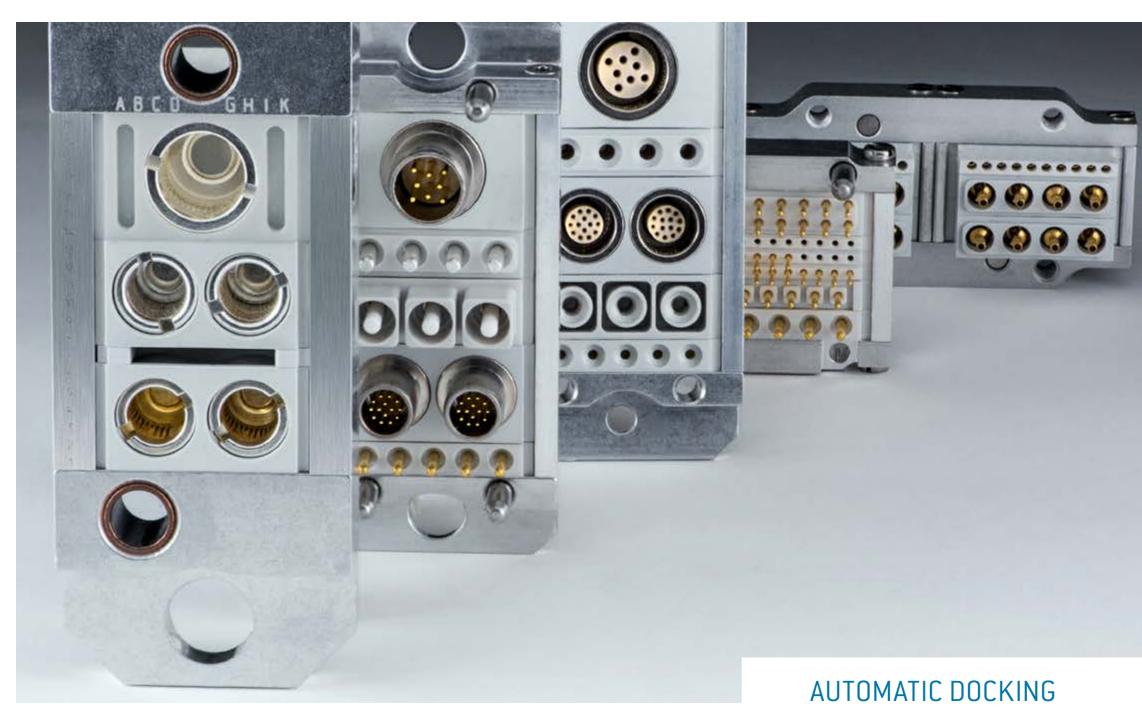
MANUAL MATING

An insulator developed specific to the application, equipped with coaxial and signal contacts, forms the connector between the MRI device and the individual body coils.

Advantages

- Minimum 50,000 mating and locking cycles
- 💦 Non-magnetic
- 1.3 and 2.8 GHz frequency range
- 50 Ω

.


...

6

....

High packing density

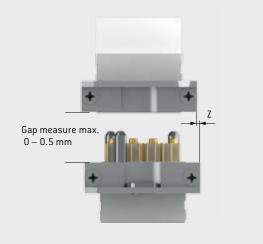
CONFIGURE THE ODU-MAC[®]. SIMPLY ONLINE AT <u>WWW.ODU-MAC.COM</u>

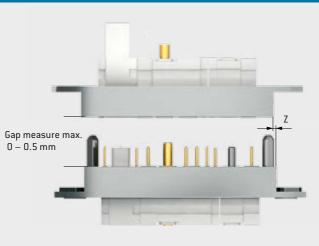
Requirements on the complete system
ODU-MAC [®] S (Standard)
ODU-MAC° L (Large)
ODU-MAC° M (Mini)
ODU-MAC [®] P (Power)
ODU-MAC® T (Transverse)
ODU-MAC [®] QCH (Quick Change Head)

Table of Contents

ODU-MAC[°]

. 34
<u>36</u>
 . 37
 .38
. 39
. 40
<u>41</u>

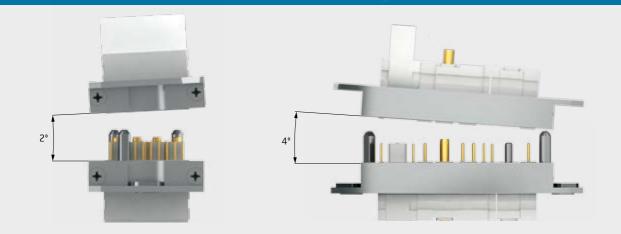

SYSTEM REQUIREMENTS AND TOLERANCES

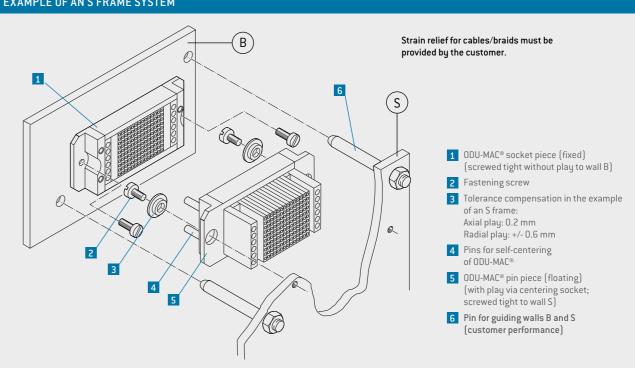


High mating cycles and perfect transfer rates – in order to ensure these for automatic docking over the long term, the docking system must be a design consideration (e.g. centering systems).

Clean and smooth docking is secured by special guiding pins that are designed for the forces which guide the connector. Please note the mechanical requirements behind the design.

MAXIMUM PERMISSIBLE OFFSET + STANDARD GAP MEASURE IN MATED CONDITION (RADIAL PLAY)




The maximum permissible gap between socket and pin pieces is 0.5 mm as a standard. Extension with long contact pins is possible.

MAXIMUM PERMISSIBLE ANGLE DEVIATION WHEN MATING

OUR TEAM IS HAPPY TO ANSWER ANY ENQUIRIES YOU MAY HAVE.

EXAMPLE OF AN S FRAME SYSTEM

NOTE: AUTOMATIC DOCKING SYSTEMS

- The pin piece of the ODU-MAC S is to be fixed with the accompanying centering sockets and has mounted floating
- The guiding system of the ODU-MAC requires additional guiding hardware for the system
- The maximum permissible gap between socket and pin pieces is 0.5 mm as standard. Extension with long contact pins is possible.
- A alignment system (e.g. guide rails, etc.) is necessary to achieve high mating cycles. The max. permissible alignment error is, for example, with the ODU-MAC S frame, less than +/-0.6 mm radial
- Strain relief for the cables/braids must be provided by the customer.

FAILURE TO OBSERVE THESE SPECIFICATIONS MAY RESULT IN DAMAGE.

DOCKING FRAME

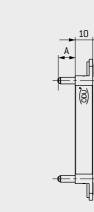
The values for the connected condition (pin S in B) result from the axial play of the centering sockets.

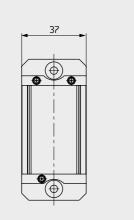
ODU-MAC[®] S (STANDARD)

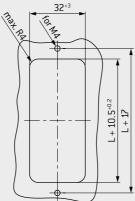
Standard solutions for docking applications.

TECHNICAL DATA

- Tolerance compensation: Axial play: 0.2 mm
- Radial play: +/- 0.6 mm • Pin piece floating supported




PIN FRAME WITH GUIDING PIN


Non-magnetic on request.

SOCKET FRAME WITH GUIDING HOLE

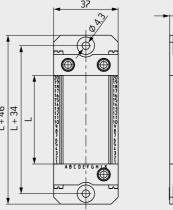
37 ф^ 30

L = Number of units × 2.54 __ = Here please register number of desired units (03 to 60, above 61 on request)

PANEL CUT-OUT

(<u>|</u>

Description	Part number	Dim. A	Note
Pin frame	611.020.0600.000	10	
Socket frame	610.020.0600.000	10	
Pin frame	611.021.0600.000	12.5	
Socket frame	610.020.0600.000	12.5	
Pin frame	611.025.0600.000	21	Madal for anindla looking
Socket frame	610.020.0600.000	21	Model for spindle locking
Pin frame	611.050.0600.000	10	With labelling
Socket frame	610.050.0600.000	10	with abelling


10

ODU-MAC[®] L (LARGE)

Frame with higher tolerance compensation and reinforced guiding bushes as well as extended guiding pins.

SOCKET FRAME WITH GUIDING BUSHES

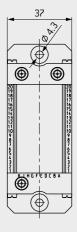
UNMATED 38

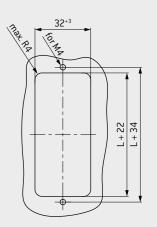
MATED

Description	Part number
Pin frame	611.009.0600.000
Socket frame	610.009.0600.000

46 34

TECHNICAL DATA


- Tolerance compensation: Axial play: 0.4 mm Radial play: +/- 1.2 mm
- Both-sided floating supported


Non-magnetic on request.

PIN FRAME WITH GUIDING PIN

PANEL CUT-OUT

L = Number of units \times 2.54

__ = Here please register number of desired units

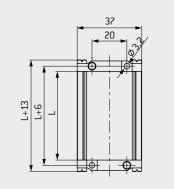
(03 to 60, above 61 on request)

ODU-MAC[®] M (MINI)

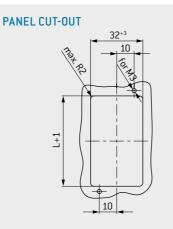
Compact style with minimum space requirement.

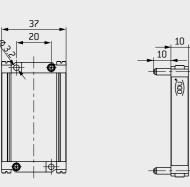
ODU-MAC[®] P (POWER)

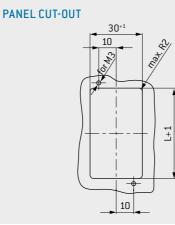
The frame for highest requirements by a reinforced frame design. High tolerance compensation +/-2.5 mm.



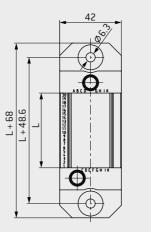
TECHNICAL DATA

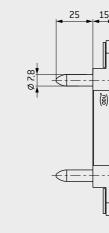

- Axial and radial play on request
- Compact style


SOCKET FRAME WITH GUIDING HOLE



PIN FRAME WITH GUIDING PIN

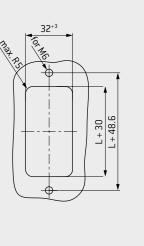

Description	Part number
Pin frame	611.017.0600.000
Socket frame	610.017.0600.000


- L = Number of units × 2.54
- __ = Here please register number of desired units (03 to 60, above 61 on request)

SOCKET FRAME WITH GUIDING BUSHES

Description	Part number
Pin frame	611.030.0600.000
Socket frame	610.030.0600.000

TECHNICAL DATA


- Tolerance compensation: Axial play: 1 mm Radial play: +/– 2.5 mm
- Both-sided floating supported
- Advisable for modules with contact diameter > 5 mm and frame length > 40 units (depending on configuration)
- Contact diameter > 8 mm: this frame has to be used
- Standard bearing bush

Non-magnetic on request.

PIN FRAME WITH GUIDING PIN

\bigcirc \odot Ð

PANEL CUT-OUT

L = Number of units \times 2.54

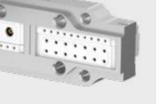
__ = Here please register number of desired units (05 to 60 in steps of 5, above 61 on request)

ODU-MAC[®]T (TRANSVERSE)

Transverse frame for installation in application specific housing solutions respectively by need of a low installation height.

ODU-MAC[®] QCH (QUICK CHANGE HEAD)

Frames for the highest mating cycles requirements (connector saver) and with a low maintenance time downtime due replaceable parts.

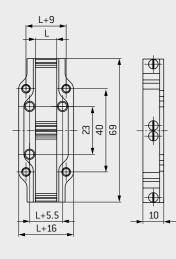

P

2223

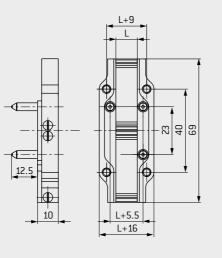
3

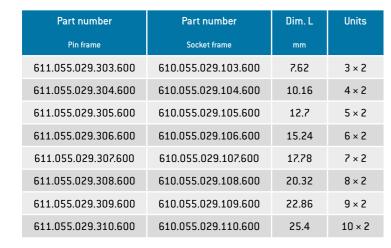
Λ

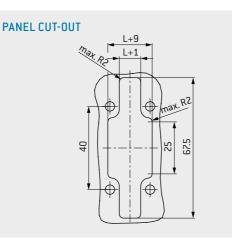
in detail.


Standard non-magnetic.

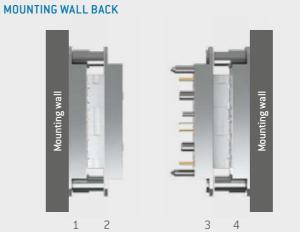
• Installation even in housing solution


Technical specifications have to be clarified


These model is available on request.


SOCKET FRAME WITH GUIDING HOLE

PIN FRAME WITH GUIDING PIN



TECHNICAL DATA

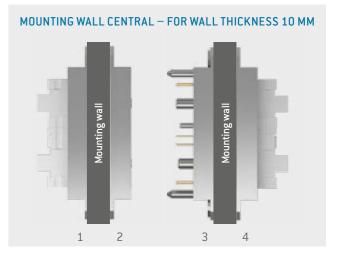
1

Description	Part number
Part 1: Base part incl. distance piece	610.026.0600.000
Part 2: Socket frame – interchange part	610.020.0600.000
Part 3: Pin frame – interchange part	611.021.0600.000
Part 4: Base part incl. distance piece	610.026.0600.000
Distance piece as a spare part	610.026.201.304.000

The quick change head (connector saver) consists of 4 frames. Pin and socket frames are disconnected or connected when disconnecting or connecting between the second and third frame.

Pieces 1 and 2 or 3 and 4 always remain together.

In the event of damage or wear to the contacts, both replacement parts 2 and 3 are disconnected from pieces 1 and 4 and can be quickly and easily replaced with the new replacement parts without time spent on assembly. The connection is ready to use again within a matter of seconds.



TECHNICAL DATA

- Tolerance compensation: Axial play: 0.2 mm Radial play: +/- 0.6 mm
- Pin piece floating supported
- Unlimited number of mating cycles
- Replacement of the interchange parts without assembly effort
- These model is available on request.

Technical specifications have to be clarified in detail.

Non-magnetic on request.

Description	Part number
Part 1: Base part	610.027.0600.000
Part 2: Socket frame – interchange part	610.020.0600.000
Part 3: Pin frame – interchange part	611.021.0600.000
Part 4: Base part	611.027.0600.000

FRAMES FOR THE QUICK CHANGE HEAD SYSTEM

The standard ODU-MAC S docking frames can be used for the connector saver. ODU-MAC L docking frames upon request. (M and P frames are not possible).

MODULES AND CONTACTS FOR THE QUICK CHANGE HEAD SYSTEM

All modules with depths not exceeding 19 mm can be used in the connector saver system. PCB contacts are installed in pieces 2 and 3. All socket contacts (crimp and PCB termination) suitable for pieces 2 and 3 can be used in pieces 1 and 4.

CONFIGURE THE ODU-MAC[®]. SIMPLY ONLINE AT <u>WWW.ODU-MAC.COM</u>

MANUAL MATING

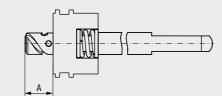
Spindle locking
Lever locking
Transverse locking
Housing with IP 68/IP 69/EMC
Frame for housing
Accessories
Coding possibilities
Flexible circular connectors with ODU-MAC [®] inserts

.44
. <u>50</u>
. <u>57</u>
 . 58
. <u>62</u>
 . <u>63</u>
. 66
. <u>68</u>

MANUAL MATING

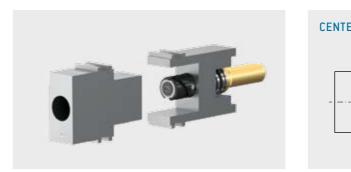
SPINDLE LOCKING

Module for installation in ODU-MAC[®] frames for housings. Quick-action locking system with 30,000 locking cycles. Simple replacement of the front (spindle exchange set) enables further mating cycles of the complete system.



VERSION 1: FOR SOCKETS IN BULKHEAD MOUNTED OR SURFACE MOUNTED HOUSING AND PINS IN CABLE HOOD

SPINDLE LOCKING


Size	Part number Center module for bulkhead mounted and surface mounted housing	Part number Spindle locking for cable hood	Angle of rotation	Dim. A
2 (52 mm high)	614.090.001.304.000	615.091.003.200.000	180°	12
2 (72 mm high)	614.090.001.304.000	615.091.001.200.000	180°	12
3/4	614.090.001.304.000	615.092.021.200.003	360°	21.5
4/XXL	614.090.001.304.000	615.093.021.200.003	360°	21.5

• Max. locking cycles 30,000¹

• Space requirement 5 units (5 × 2.54 mm)

- Further spindle geometries on request
- Can account for 80 lbf (in 9 Nm) of mating forces

VERSION 2: FOR PINS IN BULKHEAD MOUNTED OR SURFACE MOUNTED HOUSING AND SOCKETS IN CABLE HOOD (REVERSED GENDER)

2 2

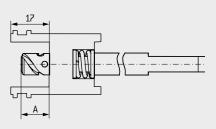
Size	Part number Center module for bulkhead mounted and surface mounted housing	Part number Spindle locking for cable hood	Angle of rotation	Dim. A
(52 mm high)	614.090.002.304.000	615.091.004.200.000	180°	12
(72 mm high)	614.090.002.304.000	615.091.002.200.000	180°	12
3/4	614.090.002.304.000	615.092.022.200.003	360°	21.5
4/XXL	614.090.002.304.000	615.093.022.200.003	360°	21.5

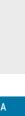
REPLACEMENT SPINDLE SET FOR VERSION 1 AND 2

ngle of rotation	Dim. A
	mm
180°	12
360°	21.5
١n	180°

¹ 30,000 cycles depending on mating force of the used modules.

¹ 30,000 cycles depending on mating force of the used modules.


HOUSING


CENTER MODULE

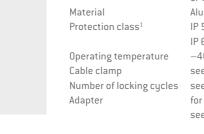
SPINDLE LOCKING

- Max. locking cycles 30,000¹
- Space requirement 5 units (5 × 2.54 mm)
- Further spindle geometries on request

Replacement set for easy and rapid replacement of spindle screw from the front.

CABLE HOOD

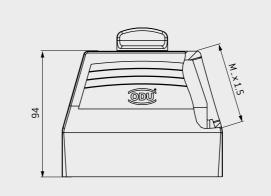
Connector housing for assembly on the cable with side cable entry.

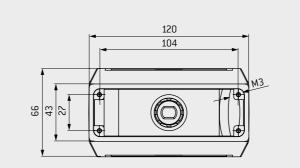

SPINDLE LOCKING

TECHNICAL DATA

x x 1.5

Colour of housing	Grey (standard, similar to RAL 7001) or white (similar RAL 9010)
Material	Aluminium die casting
Protection class ¹	IP 50
	IP 65 on request
Operating temperature	-40 °C to +125 °C
Cable clamp	see page <u>63</u>
Number of locking cycles	see page <u>44</u>
Adapter	for PG clamp
	see page <u>63</u>
Adapter	1


CABLE HOOD XXL


Connector housing for assembly on the cable. With expanded assembly space and side M50 cable entry.

SPINDLE LOCKING

A GREY MODEL

Size	Part number	Dim. M	Part n
	Colour of housing grey/ spindle knob black	Cable entry	
4	613.093.516.644.208	M50	49

Size	Part number A	Part number B	Dim. A	Dim. B	Dim. C	Dim. D	Dim. M	Part number protective cover
	Colour of housing grey/ spindle knob black	Colour of housing white/ spindle knob white	mm	mm	mm	mm	Cable entry	(see page <u>64</u>)
n	613.091.513.644.208	613.091.513.653.203	57	73	52	43	M25	491.097.613.644.000
2	613.091.514.644.208	613.091.514.653.203	57	73	72	43		491.097.013.044.000
3	613.092.514.644.208	613.092.514.653.203	77.5	93.5	76	45.5	M32	492.097.613.644.000
4	613.093.514.644.208	613.093.514.653.203	104	120	76	45.5		493.097.613.644.000

M40 CABLE ENTRY AVAILABLE ON REQUEST.

¹ IEC 60529:2013 (VDE 0470-1:2014) (depends on used cable clamp and spindle knob model).

HOUSING

TECHNICAL DATA

Colour of housing

Material Protection class¹

Operating temperature Cable clamp Number of locking cycles see page 44

Grey (similar to RAL 7001) white on request Aluminium die casting IP 50 IP 65 on request -40 °C to +125 °C see page <u>63</u>

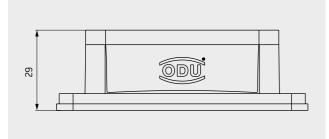
umber protective cover

(see page <u>64</u>)

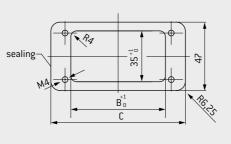
493.097.613.644.000

¹ IEC 60529:2013 (VDE 0470-1:2014) (depends on used cable clamp and spindle knob model).

BULKHEAD MOUNTED HOUSING


For mounting on the device.

SPINDLE LOCKING

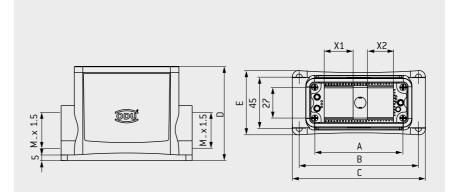


Colour of housing	Grey (standard, similar to RAL 7001) or white (similar to RAL 9010)
Material	Aluminium die casting
Protection class ¹	IP 65
Operating temperature	-40 °C to +125 °C
	(short duration)
	-40 °C to +85 °C
	(operating)
Sealing	NBR; sealing material FKM on request
	(higher temperature range)

X1 ×2 0.0 **O** 22 32 47 (ھ Α

E	AN	IEI	CI	111	r_ 0	Ш	IT
	AI	NEL			- U	I U	, ,

Size	Part number A	Part number B	Dim. A	Dim. B Panel cut-out	Dim. C	X1	X2
	Grey	White	mm	mm	mm	Units à 2.54 mm	Units à 2.54 mm
2	612.091.010.644.000	612.091.010.653.000	57	83	95	6	5
3	612.092.010.644.000	612.092.010.653.000	77.5	103	115	10	9
4	612.093.010.644.000	612.093.010.653.000	104	130	143	15	14


¹ IEC 60529:2013 (VDE 0470-1:2014) (depends on used cable hood).

For surface mounting on your device/wall with two side cable entries.

SPINDLE LOCKING

Size	Part number A	Part number B	Dim. A	Dim. B	Dim. C	Dim. D	Dim. E	X1	X2	Dim. M
	Colour of housing grey	Colour of housing white	mm	mm	mm	mm	mm	Units à 2.54 mm	Units à 2.54 mm	Cable entry
2	612.091.025.644.102	612.091.025.653.102	57	82	92.5	74	55.5	6	5	M32
3	612.092.025.644.102	612.092.025.653.102	77.5	105	117	84	56.5	10	9	M32
4	612.093.025.644.102	612.093.025.653.102	104	132	144	84	57.5	15	14	M32

¹ IEC 60529:2013 (VDE 0470-1:2014) (depends on used cable clamp and cable hood).

HOUSING

B WHITE MODEL

TECHNICAL DATA

Colour of housing	Grey (s
	similar
	white o
Material	Alumini
Protection class ¹	IP 65
Operating temperature	-40°C
	(short o
	-40°C
	(operat
Sealing	NBR; se

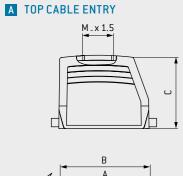
Cable clamp Adapter

Grey (standard, r to RAL 7001) on request nium die casting C to +125 °C duration) C to +85 °C ating) sealing material FKM on request (higher temperature range) see page <u>63</u> for PG clamp see page <u>63</u>

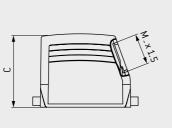
CABLE HOOD

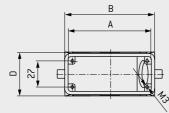
Connector housing for assembly on the cable. With straight and side cable entry.

LEVER LOCKING



A TOP CABLE ENTRY




TECHNICAL DATA

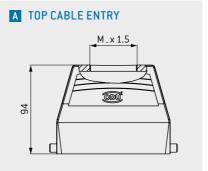
B SIDE CABLE ENTRY

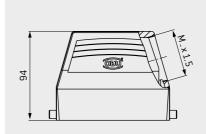
B SIDE CABLE ENTRY

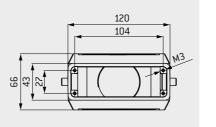
Colour of housing	Grey (standard,
	similar to RAL 7001)
Material	Aluminium die casting
Protection class ¹	IP 65
	in mated condition
Operating temperature	-40 °C to +125 °C
Cable clamp	see page <u>63</u>
Adapter	for PG clamp
	see page <u>63</u>

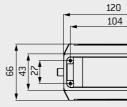
At the lever locking minimum 5,000 locking cycles are possible with lubrication. Up to 500 mating cycles there is no lubrication required.

Size	Part number A	Part number B	Dim. A	Dim. B	Dim. C	Dim. D	Dim. M	Part number
	Top cable entry	Side cable entry	mm	mm	mm	mm	Cable entry	protective cover (see page <u>64</u>)
4	490.214.450.644.102	490.414.450.644.102	44	<u> </u>	52	43	M25	400 007 500 544 000
1	490.215.450.644.102	490.415.450.644.102	44	60	72	45	M32	490.097.500.644.000
	491.214.450.644.102	491.414.450.644.102	57	73	52	43	M25	404 007 242 644 000
2	491.215.450.644.102	491.415.450.644.102	57		72		M32	491.097.212.644.000
3	492.215.450.644.102	492.415.450.644.102	77.5	93.5	76	45.5	M32	492.097.214.644.000
4	493.215.450.644.102	493.415.450.644.102		120	70	45.5	M32	402 002 244 044 000
4	493.217.550.644.000	493.417.550.644.000	104		76		M40	493.097.214.644.000


CABLE HOOD XXL


Connector housing for assembly on the cable. With expanded assembly space as well as side and top M50 cable entry.


LEVER LOCKING



A TOP CABLE ENTRY

Size	Part number A	Part number B	
	Top cable entry	Side cable entry	
4	493.218.550.644.000	493.419.550.644.000	

¹ IEC 60529:2013 (VDE 0470-1:2014) (depends on used cable clamp).

HOUSING

B SIDE CABLE ENTRY

B SIDE CABLE ENTRY

Colour of housing

Material Protection class¹

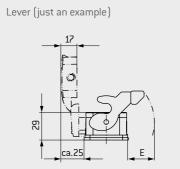
Cable clamp

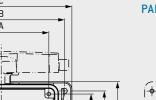
Grey (standard, similar to RAL 7001) Aluminium die casting IP 65 in mated condition Operating temperature -40 °C to +125 °C see page <u>63</u>

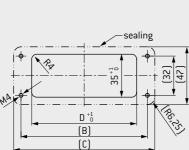
At the lever locking minimum 5,000 locking cycles are possible with lubrication. Up to 500 mating cycles there is no lubrication required.

BULKHEAD MOUNTED HOUSING

With or without cover.

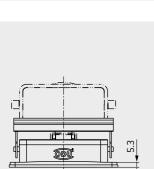

LEVER LOCKING




B WITH COVER

Sealing

5.3 ODU.

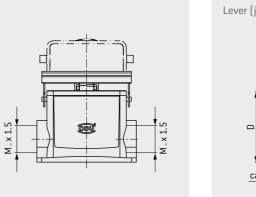


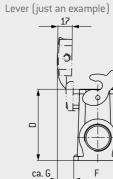
Size	Part number A	Part number B	Dim. A	Dim. B	Dim. C	Dim. D	Dim. E
	Without protective cover	With protective cover	mm	mm	mm	Panel cut-out mm	mm
1	490.130.400.644.000	490.131.400.644.000	44	70	82	52.2	≈ 22
2	491.130.400.644.000	491.131.400.644.000	57	83	95	65.2	≈ 27
3	492.130.400.644.000	492.131.400.644.000	77.5	103	115	85.5	≈ 28
4	493.130.400.644.000	493.131.400.644.000	104	130	143	112.2	≈ 28

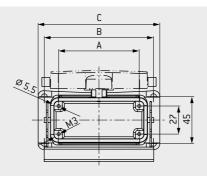
¹ IEC 60529:2013 (VDE 0470-1:2014) (depends on used cable hood).

ANEL CUT-OUT	

At the lever locking minimum 5,000 locking cycles are possible with lubrication. Up to 500 mating cycles there is no lubrication required.


range)


SURFACE MOUNTED HOUSING


For surface mounting on your device/wall with two side cable entries.

LEVER LOCKING

Size	Part number A	Part number B	Dim. A	Dim. B	Dim. C	Dim. D	Dim. E	Dim. F	Dim. G	Dim. M	
	Without protective cover	With protective cover	mm	Cable entry							
1	490.133.450.644.102	490.135.450.644.102	44	70	82	74	≈ 17	55.5	20		
2	491.133.450.644.102	491.135.450.644.102	57	82	92.5	74	≈ 23	55.5	20	M32	
3	492.133.450.644.102	492.135.450.644.102	77.5	105	117	84	≈ 23	56.5	20	M32	
4	493.133.450.644.102	493.135.450.644.102	104	132	144	84	≈ 22	58	19		

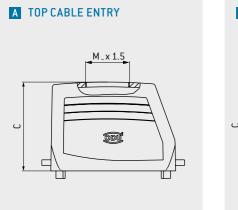
M40 CABLE ENTRY AVAILABLE ON REQUEST.

¹ IEC 60529:2013 (VDE 0470-1:2014) (depends on used cable clamp and cable hood).

HOUSING

Colour of housing	Grey (standard, similar to RAL 7001)
Material	Aluminium die casting
Protection class ¹	IP 65
	in mated condition
Operating temperature	-40 °C to +125 °C
	(short duration)
	-40 ℃ to +85℃
	(operating)
Sealing	NBR; sealing material
	FKM on request
	(higher temperature
	range)
Adapter	for PG clamp
	see page <u>63</u>

At the lever locking minimum 5,000 locking cycles are possible with lubrication. Up to 500 mating cycles there is no lubrication required.


CABLE HOOD WIDE

With straight and side cable entry for double contact arrangement on the frame.

LEVER LOCKING

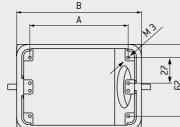
ODU

TECHNICAL DATA

Colour of housing	Grey (standard,
	similar to RAL 7001)
Material	Aluminium die casting
Protection class ¹	IP 65
	in mated condition
Operating temperature	without housing sealing
	-40 °C to +125 °C

Housing suitable for two standard frames size 3 or 4.

2 × size 3 = size 5

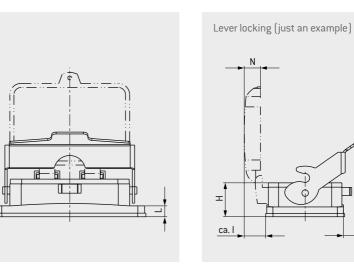

2 × size 4 = size 6

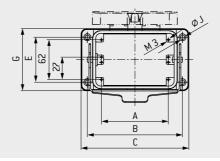
At the lever locking minimum 5,000 locking cycles are possible with lubrication. Up to 500 mating cycles there is no lubrication required.

A TOP CABLE ENTRY

2

Size	Part number A	Part number B	Dim. A	Dim. B	Dim. C	Dim. D	Dim. M
	Top cable entry	Side cable entry	mm	mm	mm	mm	Cable entry
5	494.215.550.644.000	494.415.550.644.000	77.5	94	79	82.5	M40
6	495.215.550.644.000	495.415.550.644.000	104	132	94	90	M50


¹ IEC 60529:2013 (VDE 0470-1:2014) (depends on used cable clamp).


54

BULKHEAD MOUNTED HOUSING FOR CABLE HOOD WIDE

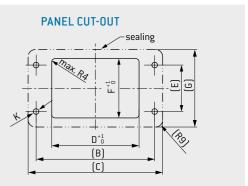
With and without cover

LEVER LOCKING **A** WITHOUT COVER

Size	Part number A	Part number B	Dim. A	Dim. B	Dim. C	Dim. D	Dim. E	Dim. F	Dim. G	Dim. H	Dim. I	Dim. J	Dim. K	Dim. L	Dim. M	Dim. N
	Without protective cover	With protective cover	mm													
5	494.130.500.644.000	494.131.500.644.000	77.5	110	127	79	65	74	89	38	≈ 23	5.5	M5	7	31	17
6	495.130.500.644.000	495.131.500.644.000	104	148	168	117	70	80	96.7	41.5	≈ 26	7	M6	12	43	20

¹ IEC 60529:2013 (VDE 0470-1:2014) (depends on used cable hood wide).

TECHNICAL DATA

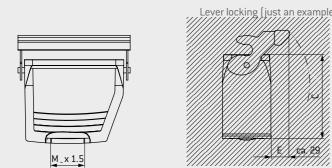

Colour of housing

Material Protection class¹

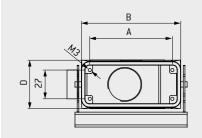
Sealing

Grey (standard, similar to RAL 7001) Aluminium die casting IP 65 in mated condition Operating temperature -40 °C to +125 °C (short duration) -40 °C to +85 °C (operating) NBR; sealing material FKM on request (higher temperature range)

At the lever locking minimum 5,000 locking cycles are possible with lubrication. Up to 500 mating cycles there is no lubrication required.



CABLE TO CABLE HOOD


With top cable entry. For a flying cable to cable connection.

LEVER LOCKING

TECHNICAL DATA

To build a cable to cable connection.					
Suitable to cable hoo	ds (page 50).				
Colour of housing	Grey (standard,				
	similar to RAL 7001)				
Material	Aluminium die casting				
Protection class ¹	IP 65				
	in mated condition				
Operating temperature	-40 °C to +125 °C				
	(short duration)				
	-40 °C to +85 °C				
	(operating)				
Sealing	NBR; sealing material				
	FKM on request				
	(higher temperature				
	range)				
Cable clamp	see page <u>63</u>				
Adapter	for PG clamp				
	see page <u>63</u>				

At the lever locking minimum 5,000 locking cycles are possible with lubrication. Up to 500 mating cycles there is no lubrication required.

TRANSVERSE LOCKING

Housing with side lockings. On request.

TECHNICAL DATA

Colour of housing	Grey (standard, similar to RAL 7001)
Material	Aluminium die casting
Protection class	IP 65 ¹ in mated condition
Operating temperature	-40 °C to +125 °C (short duration)
	–40 °C to +85 °C (operating)
Sealing	NBR

At the lever locking minimum 5,000 locking cycles are possible with lubrication. Up to 500 mating cycles there is no lubrication required.

Size	Part number	Dim. A	Dim. B	Dim. C	Dim. D	Dim. M	Part number
		mm	mm	mm	mm	Cable entry	Protective cover (see page <u>64</u>)
1	490.331.450.644.102	44	60	75	43	M32	490.097.500.644.001
2	491.331.450.644.102	57	73	75	43		491.097.133.644.000
3	492.331.450.644.102	77.5	93.3	79	45.5		492.097.133.644.000
4	493.331.450.644.102	104	120	79	45.5		493.097.133.644.000

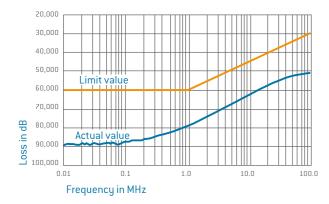
1/22/29

M40 CABLE ENTRY AVAILABLE ON REQUEST.

¹ IEC 60529:2013 (VDE 0470-1:2014) (depends on used cable clamp).

HOUSING

CABLE HOOD IN IP 68/IP 69


For applications with extreme requirements. With 360° EMC shielding according to VG 95373-41:1997. On request.

A TOP CABLE ENTRY

INSERTION LOSS

B SIDE CABLE ENTRY

TECHNICAL DATA

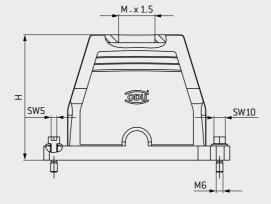
EMC model

Surface	Electrically conductible
Sealing	Inside
Housing	Aluminium die casting alloy
	seawater resistance
Temperature range	-50 °C to +120 °C
Shielding attenuation	ca. 65 dB

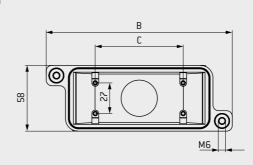
Corrosion protection model

Pressure tightness	> 5 bar
Colour	Black (similar to RAL 9002)
Protection class ¹	IP 68, IEC 60529:2013 (VDE 0470-1:2014)
	IP 69, IEC 60529:2013 (VDE 0470-1:2014)

Screw locking

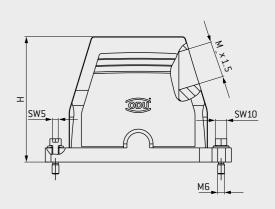

Application areas

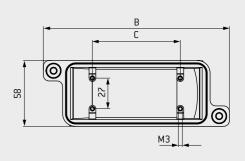
Used in EMC shielded applications. Housing construction according to IEC 61373:2010 (VDE 0115-106:2011) Cat. 2 (bogie) from rail engineering.


Size	Part number A	Part number B	Dim. B	Dim. C	Dim. M	Dim. H
	Top cable entry	Side cable entry	mm	mm	mm	mm
1	490.260.550.641.000	490.261.550.641.000	132	44	M32	100.5
2	491.262.550.641.000	491.263.550.641.000	144	57	M32	100.5
3	492.262.550.641.000	492.263.550.641.000	164	77.5	M32	110.5
4	493.262.550.641.000	493.263.550.641.000	191	104	M40	110.5

¹ IEC 60529:2013 (depends on used cable clamp).

A TOP CABLE ENTRY


Α


HOUSING

B SIDE CABLE ENTRY

В

BULKHEAD MOUNTED- AND SURFACE MOUNTED HOUSING IN IP 68/IP 69

Electrically conductible

Inside

Black

Aluminium die

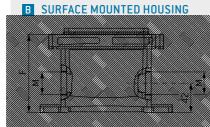
casting alloy seawater resistance

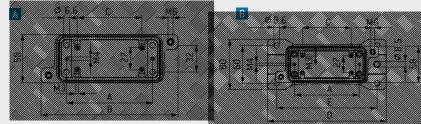
For applications with extreme requirements. With 360° EMC shielding according to VG 95373-41:1997.

A BULKHEAD MOUNTED HOUSING

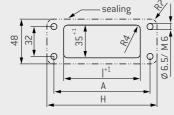
TECHNICAL DATA

EMC model Surface


Sealing


Housing

Colour


B SURFACE MOUNTED HOUSING

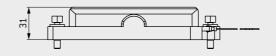
Α	BULKHEAD MOUNTED HOUSING

PANEL CUT-OUT

(similar to RAL 9002) Protection class¹ IP 68, IEC 60529:2013 (VDE 0470-1:2014) IP 69, IEC 60529:2013 (VDE 0470-1:2014) Sealing Silicone

Temperature range -50 °C to +120 °C Shielding attenuation ca. 65 dB

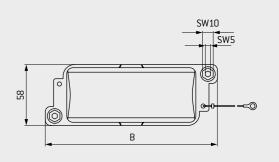
Corrosion protection model Pressure tightness > 5 bar


Application areas

Used in EMC shielded applications. Housing construction according to IEC 61373:2010 (VDE 0115-106:2011, bogie) from rail engineering.

PROTECTIVE COVER FOR BULKHEAD MOUNTED AND SURFACE MOUNTED HOUSING IN IP 68/IP 69

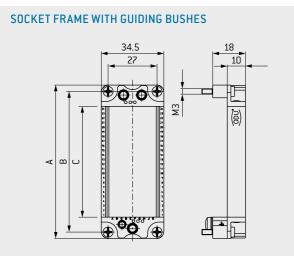
For applications with extreme requirements. With 360° EMC shielding according to VG 95373-41:1997. On request.



Size	Part number protective cover for bulkhead mounted and surface mounted housing with lanyard	
1	490.060.500.641.000	
2	491.060.500.641.000	
3	492.060.500.641.000	
4	493.060.500.641.000	

Size	Part number Bulkhead mounted	Part number Surface mounted	Dim. A	Dim. B	Dim. C	Dim. D	Dim. E	Dim. F	Dim. H	Dim. I	Dim. M Cable
	housing	housing	mm	entry							
1	490.160.500.641.000	490.161.550.641.000	70	132	44	216	127	100.5	85	48	M32
2	491.161.500.641.000	491.162.550.641.000	83	144	57	189	140	100.5	98	60	M32
3	492.161.500.641.000	492.162.550.641.000	103	164	77.5	169	160	111.5	118	82	M32
4	493.161.500.641.000	493.162.550.641.000	130	191	104	156	187	111.5	145	108	M40

¹ IEC 60529:2013 (depends on used cable clamp).



Dim. B		
mm		
132		
144		
164		
191		

ODU-MAC® FRAME FOR HOUSING

With grounded housing.

Sockets in bulkhead mounted housing, cable to cable hood or surface mounted housing. Pins in cable hood. Modules are mounted, contacts are not fixed enclosed. Coding possibilities see page <u>68</u>.

For the height of the contact pins the same dimensions are valid as described by the respective modules.

PIN FRAME WITH GUIDING PINS

Size	Part number	Part number	Max. units	Dim. A	Dim. B	Dim. C
	Socket frame	Pin frame	à 2.54 mm¹	mm	mm	mm
1	610.190.000.600.000	611.190.000.600.000	10	51	44	25.5
2	610.191.000.600.000	611.191.000.600.000	16	64 84.5	57 77.5	40.8
3	610.192.000.600.000	611.192.000.600.000	24			61.1
4/XXL	610.193.000.600.000	611.193.000.600.000	34	111	104	86.5
FRAMES FOR CABLE HOOD WIDE						
5	2 × part number size 3	2 × part number size 3	2 × 24	84.5	77.5	61.1
6	2 × part number size 4	2 x part number size 4	2 × 34	111	104	86.5

For contact arrangement in the cable hood wide please be aware that the frames in each case must be ordered double.

CABLE CLAMPS, **BLIND GROMMET AND ADAPTER RING**

CABLE CLAMP¹ FOR HOUSINGS ACCORDING TO IEC 62444:2010 (VDE 0619:2014)

PA

NBR

Temperature range $-40\ ^{\rm o}{\rm C}$ to +100 $^{\rm o}{\rm C}$

IP 68 to 5 bar

TECHNICAL DATA

Protection class

EMC clamp on request.

Material body

Sealing

Part nur

027.825.060 027.825.090 027.832.070 027.832.110 027.840.190 027.850.270 027.825.060 027.825.090 027.832.070 027.832.110 027.840.190

BLIND GROMMET FOR SURFACE MOUNTED HOUSING

TECHNICAL DATA

Colour Material Protection class IP 68 Sealing

Part nur

921.000.006 921.000.006

On requ On requ

ADAPTER RING FOR CABLE CLAMPS WITH PG THREAD

TECHNICAL DATA

Material

¹ Delivery doesn't contain cable clamp, but o-ring is enclosed to the housing.

¹ If the configuration doesn't fill the frame completely, please use blank modules (see page <u>140</u>).

mber	Thread	Colour	Width across flats	Tightening torque	Cable diameter ^{mm}	
				Nm	min.	max.
0.130.007	M25 × 1.5	Grey	30	8	6	13
0.170.007	M25 × 1.5		30		9	17
0.150.007	M32 × 1.5		36	10	7	15
.210.007					11	21
.280.007	M40 imes 1.5		46	13	19	28
.350.007	M50 imes 1.5		55	15	27	35
0.130.003	M25 × 1.5	White	30	8	6	13
0.170.003					9	17
0.150.003	N00 4 F		36	10	7	15
.210.003	M32 × 1.5				11	21
.280.003	M40 imes 1.5		46	13	19	28

```
Grey
                  PA fibre glass reinforced
Temperature range -40 °C to +100 °C
                  NBR
```

mber	Thread (M)
6.000.279	25 × 1.5
5.000.268	32 × 1.5
uest	40 × 1.5
uest	50 × 1.5

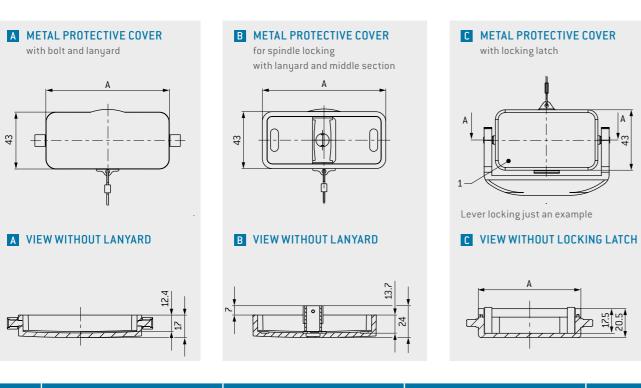
Nickel-plated brass

mber	External thread	Internal thread
5.000.254	25 × 1.5	PG 21
6.000.255	32 × 1.5	PG 29
6.000.267	32 × 1.5	M40

PROTECTIVE COVER

For cable hood, cable to cable hood and cable hood XXL.

TECHNICAL DATA


Grey (standard, similar to RAL 7001) Colour

Protection class IP 65 in locked condition

Metal protective cover with locking latch (C) Metal protective cover with bolt and lanyard (A)

Protection class IP 54 in locked condition

Metal protective cover with middle section for spindle locking with lanyard and middle section (B) Material Aluminium die casting (body) Temperature range -40 °C to +125 °C NBR Sealing

Size	IP 65	IP 50	IP 65	Dim. A
	Part number A	Part number B	Part number C	
	Metal protective cover with bolt and lanyard	Metal protective cover for spindle locking with lanyard and middle section	Metal protective cover with locking latch	mm
1	490.097.500.644.001	-	490.097.500.644.000	60
2	491.097.133.644.000	491.097.613.644.000	491.097.212.644.000	73
3	492.097.133.644.000	492.097.613.644.000	492.097.214.644.000	93.5
4/XXL	493.097.133.644.000	493.097.613.644.000	493.097.214.644.000	120

TRANSPORT PROTECTIVE COVER

For protection of the assembled connector during transport.

Size	Part number	Part number	
	With holding lanyard	Without holding lanyard	
1	490.097.900.924.000	490.097.900.924.101	
2	491.097.900.924.000	491.097.900.924.101	
3	492.097.900.924.000	492.097.900.924.101	
4/XXL	493.097.900.924.000	493.097.900.924.101	

43

 $-\Box$

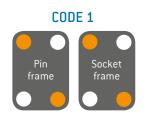
HOUSING

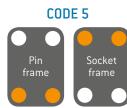
TECHNICAL DATA

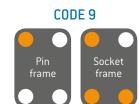
Material Colour

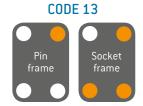
Plastic PP/antistatic Black (similar to RAL 9002)

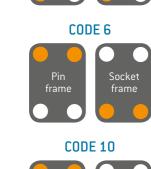
CODING POSSIBILITIES IN THE HOUSING


To prevent mismating.


In order to prevent mismating, hardware can be configured for connection systems with coding.

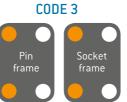

In place of cylinder screws, coding pins/sockets can be used in the housing of the ODU-MAC. ODU offers 16 different coding possibilities. The frames are supplied as standard without additional coding. If multiple connectors are used side by side, mismating can be prevented.




POSSIBLE CODINGS

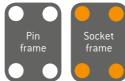


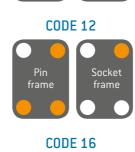
Pin frame


CODE 2

Socket frame

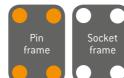
CODE 14


CODE 7

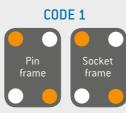

Socket frame Pin frame

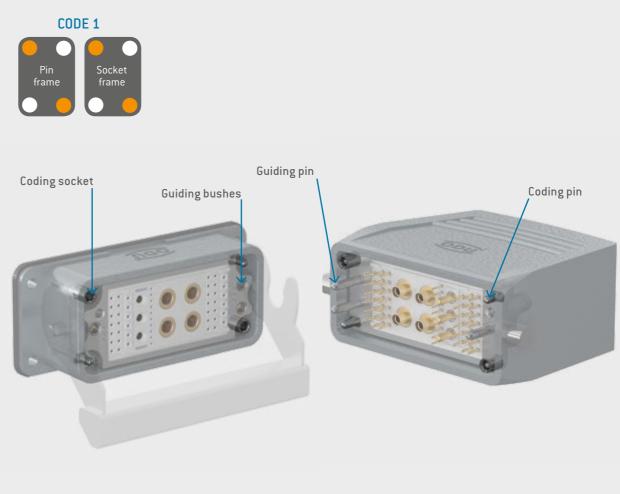
CODE 15

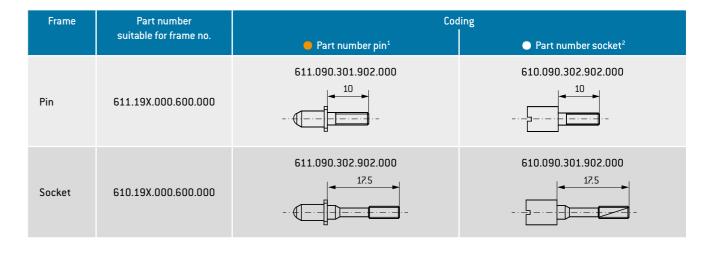
CODE 4


CODE 8

Pin frame

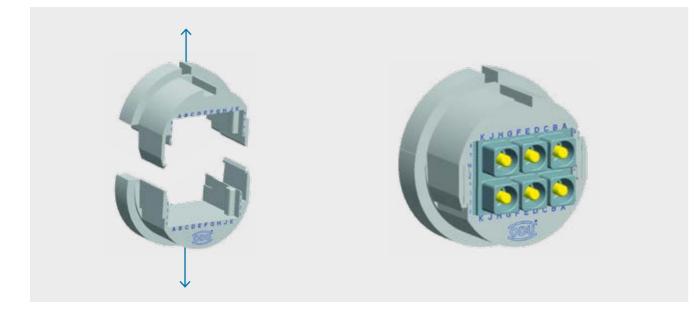

Pin frame


Socket frame


Socket frame

CODING EXAMPLE

PART NUMBER TORQUE WRENCH: 1.2 NM: 598.054.002.000.000, PLUS 2 × BIT SEE PAGE 152


HOUSING

FLEXIBLE CIRCULAR CONNECTORS WITH ODU-MAC[®] INSERTS

Suitable for rugged housing from series 209 and housing ODU DOCK.

Modular circular connectors from the existing portfolio can be easily configured with the flexible ODU-MAC inserts. The flexible insulators (half shells) are compatible with the housings of the series 209 and ODU DOCK and can be easily installed in them. The result is a modular circular connector with a very robust housing.

The flexible use provides space for ODU-MAC modules with 8 units. Thanks to the divided insulator, installation of ODU-MAC modules is possible without a large expenditure of time. The modules are easily inserted into the insulator. Following the completed contact arrangement, the two halves are clipped together and integrated into the respective housing.

Due to the combination of two proven ODU products you can arrange the inserts individual:

- Combination of ODU DOCK housings with integrated modules from the ODU-MAC program
- Space for 8 units (1 unit = 2.54 mm)
- Material insulator: PBT

Description	Part number	Part number
	Insulator socket	Insulator pin
Insulator half-shells	209.610.000.000.000	209.611.000.000.000

NOTE

- Please use only protruding contacts from arnothing 1.02 mm
- Assembly instruction available on our website
- Delivery times according to series 209 and ODU DOCK

APPLICATION EXAMPLES

HOUSING

CONFIGURE THE ODU-MAC[®]. SIMPLY ONLINE AT <u>WWW.ODU-MAC.COM</u>

Overview
Signal
Power
High current
High voltage
Coax
Pneumatic and fluid model
Fibre-optic
Shielded implementation/high-speed connector
Blank modules/spacer modules/coding modules/pin protection mod

Table of Contents

ODU-MAC[®]

	<u>72</u>
	<u>88</u>
	96
	102
	106
	116
	126
	132
dules	140

OVERVIEW OF ALL MODULES

OVERVIEW OF ALL MODULES

	Modules	Description	Units/width	Features	5	Page
		14 contacts for turned contacts Contact Ø: 1.02 mm	3 units (7.62 mm)	High contact density Operating voltage ¹ Rated impulse voltage ¹ Max. continuous current ² Degree of pollution ¹ Mating cycles	320 V 2,500 V 13.5 A at 0.5 mm ² 2 minimum 100,000	<u>78</u>
		10 contacts for turned contacts Contact Ø: 0.76 mm	1 unit (2.54 mm)	Highest contact density Operating voltage ¹ Rated impulse voltage ¹ Max. continuous current ² Degree of pollution ¹ Mating cycles	250 V 1,500 V 11 A at 0.38 mm ² 2 minimum 100,000	<u>80</u>
Signal		10 contacts for stamped contacts Contact Ø: 0.7 mm	1 unit (2.54 mm)	Economical solution Operating voltage ¹ Rated impulse voltage ¹ Max. continuous current ² Degree of pollution ¹ Mating cycles	32 V 1,500 V 6 A at 0.38 mm ² 2 minimum 5,000	<u>82</u>
		6 contacts for turned contacts Contact Ø: 1.02 mm	2 units (5.08 mm)	Operating voltage ¹ Rated impulse voltage ¹ Max. continuous current ² Degree of pollution ¹ Mating cycles	400 V 3,000 V 13.5 A at 0.5 mm ² 2 minimum 100,000	<u>84</u>
		5 contacts for turned contacts Contact Ø: 1.5 mm	2 units (5.08 mm)	Operating voltage ¹ Rated impulse voltage ¹ Max. continuous current ² Degree of pollution ¹ Mating cycles	500 V 2,500 V 27 A at 1.5 mm² 2 minimum 100,000	<u>86</u>
Power		4 contacts for turned contacts Contact Ø: 2.41 mm	3 units (7.62 mm)	Operating voltage ¹ Rated impulse voltage ¹ Max. continuous current ² Degree of pollution ¹ Mating cycles	500 V 3,000 V 41 A at AWG 12 2 minimum 100,000	<u>88</u>

¹Acc. to IEC 60664-1:2007 (VDE 0110-1:2008) for degree of pollution 2.² Definition max. continuous current see page <u>165</u>.

¹ Acc. to IEC 60664-1:2007 (VDE 0110-1:2008).² Definition max. continuous current see page <u>165</u>.³ Contact with springwire technology. ⁴ Contact with lamella technology.

Table of C

Jnits/width	Features					
3 units (7.62 mm)	Operating voltage ¹ Rated impulse voltage ¹ Max. continuous curren Degree of pollution ¹ Mating cycles	500 V 3,000 V t ² 58 A at 6 mm ² 2 minimum 100,000	<u>90</u>			
4 units (10.16 mm)	High voltage Operating voltage ¹ Rated impulse voltage ¹ Max. continuous curren Degree of pollution ¹ Mating cycles	2,500 V 10,000 V t ² 58 A at 6 mm ² 2 minimum 100,000	<u>92</u>			
5 units (12.7 mm)	Operating voltage ¹ Rated impulse voltage ¹ Max. continuous curren Degree of pollution ¹ Mating cycles	1,000 V 4,000 V t ² 119 A at 16 mm ² 2 minimum 100,000	<u>94</u>			
6 units (15.24 mm)	Operating voltage ¹ Rated impulse voltage ¹ Max. continuous curren Degree of pollution ¹ Mating cycles	500 V 3,000 V t ² 142 A at 25 mm ² 2 minimum 100,000	<u>96</u>			
6 units (15.24 mm)	Operating voltage ¹ Rated impulse voltage ¹ Max. continuous curren Degree of pollution ¹ Mating cycles		<u>98</u>			
7 units (17.78 mm) at both versions	Highest current Model Operating voltage ¹ Rated impulse voltage ¹ Max. continuous current ² Degree of pollution Mating cycles	10 mm 12 mm 250 V 200 V 4,000 V 3,000 V 179 A 220 A at 35 mm² at 50 mm² 2 2 min. 10,000 min. 10,000	<u>100</u>			

OVERVIEW OF ALL MODULES

OVERVIEW OF ALL MODULES

	Modules		Description	Units/width	Features	;	Page
Coax			2 contacts for 75 Ω coax contacts	5 units (12.7 mm)	Frequency range Mating cycles	0 to 3.0 GHz minimum 100,000	<u>114</u>
		_		_			
			2 contacts for pneumatic valves	5 units (12.7 mm)	20 bar Tube diameter Mating cycles	max. 4 mm minimum 100,000	<u>116</u>
Pneumatic and fluid model		0	2 contacts for pneumatic valves	16 units (40.64 mm)	12 bar Tube diameter Mating cycles	max. 6 mm minimum 100,000	<u>118</u>
Pneumatic ar			1 contact for pneumatic valve	8 units (20.32 mm)	12 bar Tube diameter Mating cycles	max. 6 mm minimum 100,000	<u>120</u>
		0	2 contacts for fluid coupling plug	5 units (12.7 mm)	10 bar Tube diameter Mating cycles	M5 internal thread minimum 100,000	<u>122</u>
Fibre-optic	44444		5 contacts for fibre-optic contacts for plastic fibre (POF)	2 units (5.08 mm)	High contact density Insertion loss typical Mating cycles	1.5 dB at 670 nm minimum 40,000	<u>126</u>

	Modules	Description	Units/width	Features		Page
High voltage	0000	4 contacts for turned contacts Contact Ø: 1.5 mm	3 units (7.62 mm)	High contact density high v Operating voltage ¹ Rated impulse voltage ¹ Max. continuous current ² Degree of pollution ¹ Mating cycles	oltage 2,500 V 10,000 V 27 A at 1.5 mm ² 2 minimum 100,000	<u>102</u>
High		1 contact	8 units (20.32 mm)	High voltage Operating voltage ¹ Rated impulse voltage ¹ Degree of pollution ¹ Mating cycles	6,300 V 20,000 V 2 minimum 100,000	<u>104</u>
		4 contacts for	3 units	High contact density		
		50 Ω coax contacts	(7.62 mm)	Frequency range Mating cycles	0 to 1.3 GHz minimum 60,000	<u>106</u>
Xe		2 contacts for 50 Ω coax contacts SMA termination	5 units (12.7 mm)	9.0 GHz Frequency range Mating cycles	0 to 9.0 GHz minimum 100,000	<u>108</u>
Соах		2 contacts for 50 Ω coax contacts	5 units (12.7 mm)	Frequency range Mating cycles	0 to 2,4 GHz minimum 100,000	<u>110</u>
		2 contacts for 50 Ω coax contacts	5 units (12.7 mm)	High voltage Frequency range Mating cycles	0 to 2.8 GHz minimum 100,000	<u>112</u>

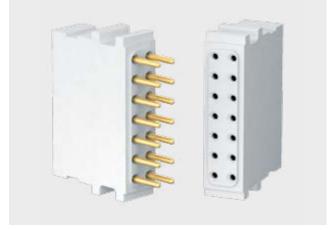
¹Acc. to IEC 60664-1:2007 (VDE 0110-1:2008) for degree of pollution 2. ²Definition max. continuous current see page <u>165</u>.

Table of C

OVERVIEW OF ALL MODULES

OVERVIEW OF ALL MODULES

	Modules	Description	Units / width	Features		Page
Fibre-optic		2 contacts for fibre-optic contacts for plastic fibre (POF)	5 units (12.7 mm)	Mating cycles Insertion loss typical	minimum 100,000 1.5 dB at 670 nm	<u>128</u>
Fibre	000	3 contacts for fibre-optic contacts for fibre glass (GOF)	4 units (10.16 mm)	Mating cycles Insertion loss typical	minimum 100,000 1 dB at 670 nm	<u>130</u>
		2 to 10 contacts for inserts size 0	5 units (12.7 mm)	Mating cycles Suitable for all common bus s	minimum 5,000 systems	<u>132</u>
Shielded implementation/high-speed connector		2 to 14 contacts for inserts size 1	6 units (15.24 mm)	Mating cycles With springwire Suitable for all common bus s	minimum 5,000 minimum 60,000 systems	<u>134</u>
Shielded implementatio		4 to 16 contacts for inserts size 2	7 units (17.78 mm)	Mating cycles With springwire Suitable for all common bus s	minimum 5,000 minimum 60,000 systems	<u>136</u>
	P	10 to 30 contacts for inserts size 3	8 units (20.32 mm)	Mating cycles Suitable for all common bus s	minimum 5,000 systems	<u>138</u>


	Modules	Description	Units/width	Features	Page
on modules		Blank modules	1 unit (2.54 mm) 3 units (7.62 mm) 5 units (12.7 mm)	Used to restock not completely equipped frames.	<u>140</u>
ing modules / pin protecti		Spacer module	1 unit (2.54 mm) 2 units (5.08 mm) 3 units (7.62 mm) 5 units (12.7 mm)	Not equipped, enable the pluggability despite different contact equipment in the pin piece. For information on the individual spacer modules please look at the correspond- ing modules.	<u>141</u>
Blank modules / spacer modules / coding modules / pin protection modules	<u>F</u>	Coding modules	1 unit (2.54 mm)	Arranged between the modules to create keyed guiding system.	<u>142</u>
Blank module		Pin protection modules	1 unit (2.54 mm)	Used to protect the pins in conjunction with small pin diameters.	<u>143</u>

MODULES 14 CONTACTS

SIGNAL

REMOVAL TOOL I (ANGLED)

Removal of the already assembled contact (incl. cable). PART NUMBER: 087.170.362.000.000

Removal of the unassembled contact (with cable – wire may have removed) PART NUMBER: 087.611.001.001.000

For an overview of all tools please see from page <u>152</u>.

Contact diameter: 1.02 mm Mating cycles: minimum 100,000 Current-carrying capacity¹: 13.5 A

TECHNICAL DATA

- The current load information is valid for single contacts or fully equipped modules. For use in connector systems, the load should be reduced according to VDE 0298-4:2013 (see page <u>168</u>).
- Contacts and insulators up to 200 °C on request.
- Crimp information see page <u>146</u>.

TECHNICAL DATA

Voltage information²

Operating voltage	320 V	100 V
Rated impulse voltage	2,500 V	2,500 V
Degree of pollution	2	3

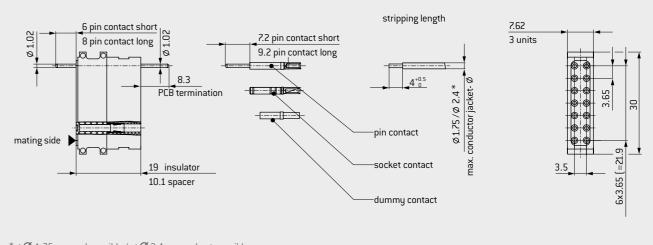
Voltage information acc. to MIL³

Operating voltage Test voltage

Mechanical data

Total mating force (average) Total sliding force (average) Contact diameter Operating temperature Mating cycles

Materials Insulator


Contact body Contact spring Contact processing 18.9 N / Module 13.7 N / Module 1.02 mm -40 °C to +125 °C minimum 100,000

950 V

2,850 V

Thermoplastic fibre glass reinforced acc. to UL-94 Cu alloy CuBe alloy Au over Ni

INSULATOR PIN AND SOCKET

* $\leq \emptyset$ 1.75 removal possible / $\leq \emptyset$ 2.4 removal not possible.

Module 14 contacts	Part number
Insulator	611.130.114.923.000
Spacer	611.130.111.923.000
Dummy contact	021.341.124.923.000

Description	Part number	Conductor cross-section mm ²	Termination AWG/mm	Nominal Single contact A	CURRENT ² Module fully equipped A	Max. continuous current ³ Single contact A	Contact resistance mΩ
Pin contact short ¹	180.362.000.307.000						
Pin contact long ¹	180.382.000.307.000	0.50/0.38	20/22	9	7	13.5	2.1
Socket contact	170.362.700.207.000						
Pin contact short ¹	180.544.000.307.000						
Pin contact long ¹	180.574.000.307.000	0.25/0.08	24/28	6	5	9	2.1
Socket contact	170.544.700.207.000						
Pin contact short ¹	180.818.000.307.000		PCB				
Pin contact long ¹	180.819.000.307.000		termination	9	7	13.5	2.1
Socket contact	170.818.700.207.000		Ø 1.02 mm				

MODULES

¹Non-magnetic version on request, ²Determined acc. to IEC 60512-5-1:2002 (DIN EN 60512-5-1:2003) at a temperature increase of 45 K.

MODULE 10 CONTACTS FOR TURNED CONTACTS

SIGNAL

Removal of the already assembled contact (incl. cable). PART NUMBER: 087.170.361.000.000

Removal of the unassembled contact (with cable – wire may have removed) PART NUMBER: 087.611.001.001.000

For an overview of all tools please see from page <u>152</u>.

Contact diameter: 0.76 mm Mating cycles: minimum 100,000 Current-carrying capacity¹: 11 A

TECHNICAL DATA

- The current load information is valid for single contacts or fully equipped modules. For use in connector systems, the load should be reduced according to VDE 0298-4:2013 (see page 168).
- The 10 contacts modules with turned contacts are not compatible with stamped contacts or modules.
- Contacts and insulators up to 200 °C on request.
- Crimp information see page <u>146</u>.

TECHNICAL DATA

Voltage information ²		
Operating voltage	250 V	32 V
Rated impulse voltage	1,500 V	1,500 V
Degree of pollution	2	3

Voltage information acc. to MIL³

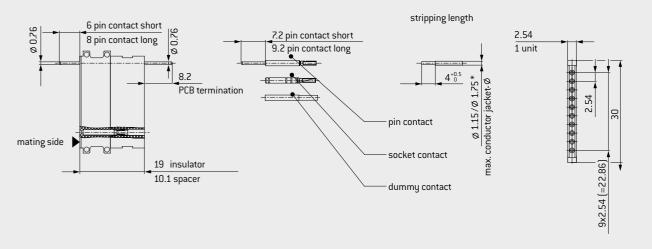
Operating voltage Test voltage

Mechanical data

Total mating force (average) Total sliding force (average) Contact diameter Operating temperature

Mating cycles

Materials Insulator


Contact body Contact spring Contact processing 13.5 N / Module 9.8 N / Module 0.76 mm -40 °C to +125 °C acc. to UL 1977, Second edition, max.75°C minimum 100,000 Thermoplastic fibre glass reinforced

500 V

1,500 V

acc. to UL-94 Cu alloy CuBe alloy Au over Ni

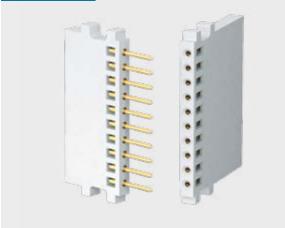
INSULATOR PIN AND SOCKET

* $\leq \emptyset$ 1.15 removal possible / $\leq \emptyset$ 1.75 removal not possible.

Module 10 contacts	Part number
Insulator	611.122.110.923.000
Spacer	611.122.111.923.000
Dummy contact	021.341.123.923.000

Description	Part number	Conductor cross-section mm ²	Termination AWG/mm	Nominal Single contact A	current² Module fully equipped A	Max. continuous current ³ Single contact A	Contact resistance mΩ		
Pin contact short ¹	180.361.000.307.000								
Pin contact long ¹	180.381.000.307.000	0.38	22	7.5	6	11	3.8		
Socket contact ¹	170.361.700.207.000								
Pin contact short ¹	180.540.000.307.000								
Pin contact long ¹	180.570.000.307.000	0.25/0.08	24/28	6	5	9	3.8		
Socket contact ¹	170.540.700.207.000								
Pin contact short ¹	180.850.000.307.000		PCB						
Pin contact long ¹	180.851.000.307.000		termination	7.5	6	11	3.8		
Socket contact ¹	170.850.700.207.000		Ø0.76 mm						

¹Definition max. continuous current see page <u>165</u>. ² IEC 60664-1:2007 (VDE 0110-1:2008) see page <u>159</u>. ³ See page <u>163</u>.


MODULES

MODULE 10 CONTACTS FOR STAMPED CONTACTS

SIGNAL

Contact diameter: 0.7 mm Mating cycles: minimum 5,000 Current-carrying capacity¹: 6 A

TECHNICAL DATA

- The current load information is valid for single contacts or fully equipped modules. For use in connector systems, the load should be reduced according to VDE 0298-4:2013 (see page 168).
- The 10 contacts modules with turned contacts are not compatible with stamped contacts or modules.
- Contacts are not removable.
- Crimp information see page <u>146</u>.

TECHNICAL DATA

Voltage information ²		
Operating voltage	32 V	10 V
Rated impulse voltage	1,500 V	1,500 V
Degree of pollution	2	3

Voltage information acc. to MIL³

Operating voltage Test voltage

Mechanical data

Total mating force (average) Total sliding force (average) Contact diameter Operating temperature Mating cycles

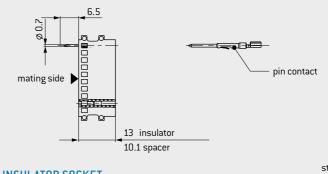
Materials

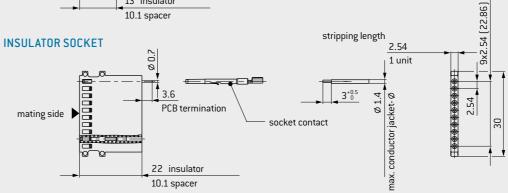
Insulator

Contact Contact finish in termination area in contact area

4.8 N / Module 0.7 mm -40 °C to +125 °C minimum 5,000

450 V


1,350 V


5 N / Module

Thermoplastic fibre glass reinforced acc. to UL-94 CuSn6 alloy Sn over Ni

Au over Ni

INSULATOR PIN

Module 10 contacts	Part number
Insulator socket (crimp)	610.158.110.923.000
Insulator pin (crimp)	611.158.110.923.000
Insulator socket (PCB equipped)	610.158.010.923.000
Spacer	611.122.111.923.000

Description	Part number	Conductor cross- section mm ²	Termination AWG	Nomina Single contact A	al current ¹ Module fully equipped A	Max. continuous current ² Single contact A	Contact resistance mΩ
Pin contact	186.080.103.535.1	0.14/0.08	26/28	3.5	2.5	4.5	3.8
Socket contact	176.082.103.535.1	0.14/0.00	20/20	3.5	2.5	4.5	5.0
Pin contact	186.080.103.535.2	0.38/0.25	22/24	4.5	3.5	6	3.8
Socket contact	176.082.103.535.2	0.30/0.25	22/24	4.5	5.5	O	5.0
Packaging unit for crimp model							

Packaging unit for crimp i	model (per ree	el j				
Quantity	500	900	5,000	10,000	20,000	
Code number	51	52	54	55	50	

MODULE 6 CONTACTS

SIGNAL

REMOVAL TOOL I (ANGLED)

Removal of the already assembled contact (incl. cable). PART NUMBER: 087.170.362.000.000

Removal of the unassembled contact (with cable – wire may have removed) PART NUMBER: 087.611.001.001.000

For an overview of all tools please see from page <u>152</u>.

Contact diameter: 1.02 mm Mating cycles: minimum 100,000 Current-carrying capacity¹: 13.5 A

TECHNICAL DATA

- The current load information is valid for single contacts or fully equipped modules. For use in connector systems, the load should be reduced according to VDE 0298-4:2013 (see page 168).
- Contacts and insulators up to 200 °C on request.
- Crimp information see page <u>146</u>.

TECHNICAL DATA

Voltage information²

0			
Operating voltage	400 V	160 V	
Rated impulse voltage	3,000 V	3,000 V	
Degree of pollution	2	3	

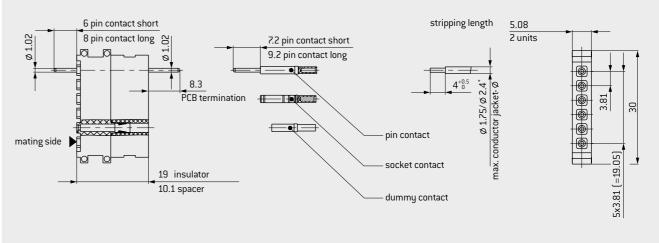
Voltage information acc. to MIL³

Operating voltage Test voltage

Mechanical data

Total mating force (average) Total sliding force (average) Contact diameter Operating temperature Mating cycles

Materials Insulator


Contact body Contact spring Contact processing 8.1 N / Module 5.9 N / Module 1.02 mm -40 °C to +125 °C minimum 100,000

850 V

2,550 V

Thermoplastic fibre glass reinforced acc. to UL-94 Cu alloy CuBe alloy Au over Ni

INSULATOR PIN AND SOCKET

^{*} ≤ Ø 1.75 removal possible / ≤ Ø 2.4 removal not possible.

Module 6 contacts	Part number
Insulator	611.123.106.923.000
Spacer	611.123.111.923.000
Dummy contact	021.341.124.923.000

Description	Part number	Conductor cross-section mm ²	Termination AWG	Nomina Single contact A	l current ¹ Module fully equipped A	Max. continuous current ² Single contact A	Contact resistance mΩ
Pin contact short ¹	180.362.000.307.000						
Pin contact long ¹	180.382.000.307.000	0.50/0.38	20/22	9	8	13.5	2.1
Socket contact ¹	170.362.700.207.000						
Pin contact short ¹	180.544.000.307.000						
Pin contact long ¹	180.574.000.307.000	0.25/0.08	24/28	6	6	9	2.1
Socket contact ¹	170.544.700.207.000						
Pin contact short ¹	180.818.000.307.000		PCB				
Pin contact long ¹	180.819.000.307.000		termination	9	8	13.5	2.1
Socket contact ¹	170.818.700.207.000		Ø 1.02 mm				

MODULES

MODULE 5 CONTACTS

SIGNAL

REMOVAL TOOL I (STRAIGHT)

Removal of the already assembled contact (incl. cable). PART NUMBER: 087.170.138.000.000

Removal of the already assembled contact (incl. cable). PART NUMBER: 087.170.363.000.000

Removal of the unassembled contact (with cable – wire may have removed) PART NUMBER: 087.611.001.001.000

For an overview of all tools please see from page <u>152</u>.

Contact diameter: 1.5 mm Mating cycles: minimum 100,000 Current-carrying capacity¹: 27 A

TECHNICAL DATA

- The current load information is valid for single contacts or fully equipped modules. For use in connector systems, the load should be reduced according to VDE 0298-4:2013 (see page 168).
- Contacts and insulators up to 200 °C on request.
- Crimp information see page <u>146</u>.

TECHNICAL DATA

Voltage information²

Operating voltage	500 V	200 V
Rated impulse voltage	2,500 V	2,500 V
Degree of pollution	2	3

Voltage information acc. to MIL³

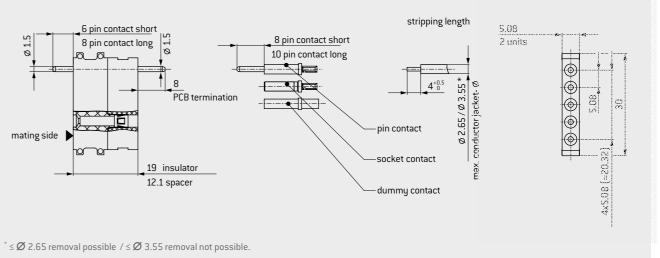
Operating voltage Test voltage

Mechanical data

Total mating force (average) Total sliding force (average) Contact diameter Operating temperature Mating cycles

Materials Insulator

Contact body
Contact spring
Contact finish
Contact body
Contact springs


22.5 N / Module 15 N / Module 1.5 mm -40 °C to +125 °C minimum 100,000

750 V

2,250 V

Thermoplastic fibre glass reinforced acc. to UL-94 Cu alloy CuSn alloy Au over Ni Ag

INSULATOR PIN AND SOCKET

Module 5 contacts	Part number
Insulator	611.124.105.923.000
Spacer	611.124.111.923.000
Dummy contact	021.341.125.923.000

Description	Part number	Conductor cross-section mm ²	Termination AWG	Nomin Single contact A	al current ¹ Module fully equipped A	Max. continuous current ² Single contact A	Contact resistance mΩ
Pin contact short ¹	180.363.000.307.000						
Pin contact long ¹	180.383.000.307.000	1.5	14	18	14.5	27	0.95
Socket contact ¹	170.363.700.201.000						
Pin contact short	180.543.000.307.000						
Pin contact long	180.573.000.307.000		16	18	14.5	27	0.95
Socket contact	170.543.700.201.000						
Pin contact short ¹	180.545.000.307.000						
Pin contact long ¹	180.575.000.307.000	1/0.75	18	16	13	22.5	0.95
Socket contact ¹	170.545.700.201.000						
Pin contact short ¹	180.541.000.307.000						
Pin contact long ¹	180.571.000.307.000	0.5/0.38	20/22	10	8	15	0.95
Socket contact ¹	170.541.700.201.000						
Pin contact short	180.857.000.307.000						
Pin contact long	180.856.000.307.000	0.25/0.08	24/28	6	6	9	0.95
Socket contact	170.857.700.201.000						
Pin contact short	180.539.000.307.000		PCB				
Pin contact long	180.569.000.307.000		termination	18	14.5	27	0.95
Socket contact	170.539.700.201.000		Ø 1.5 mm				

¹Non-magnetic version on request. ² Determined acc. to IEC 60512-5-1:2002 (DIN EN 60512-5-1:2003) at a temperature increase of 45 K. ³ Definition max. continuous current see page <u>165</u>.

¹Definition max. continuous current see page <u>165</u>. ²IEC 60664-1:2007 (VDE 0110-1:2008) see page <u>159</u>. ³See page <u>163</u>.

MODULES

MODULE 4 CONTACTS

POWER

REMOVAL TOOL I (STRAIGHT)

Removal of the already assembled contact (incl. cable). PART NUMBER: 087.170.139.000.000

REMOVAL TOOL I (ANGLED)

Removal of the already assembled contact (incl. cable). PART NUMBER: 087.170.365.000.000

REMOVAL TOOL II

Removal of the unassembled contact (with cable – wire may have removed) PART NUMBER: 087.611.001.001.000

For an overview of all tools please see from page <u>152</u>.

¹Definition max. continuous current see page <u>165</u>, ²IEC 60664-1:2007 (VDE 0110-1:2008) see page <u>159</u>, ³See page <u>163</u>.

Contact diameter: 2.41 mm Mating cycles: minimum 100,000 Current-carrying capacity¹: 41 A

TECHNICAL DATA

- The current load information is valid for single contacts or fully equipped modules. For use in connector systems, the load should be reduced according to VDE 0298-4:2013 (see page <u>168</u>).
- Crimp information see page <u>146</u>.

TECHNICAL DATA

Voltage information²

Operating voltage	500 V	200 V
Rated impulse voltage	3,000 V	3,000 V
Degree of pollution	2	3

Voltage information acc. to MIL³

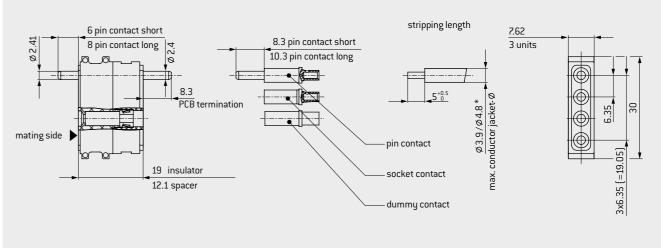
Operating voltage Test voltage

Mechanical data

Total mating force (average) Total sliding force (average) Contact diameter Operating temperature Mating cycles

Materials Insulator

Contact body Contact spring Contact finish


27 N / Module 21 N / Module 2.41 mm -40 °C to +125 °C minimum 100,000

1,100 V

3,300 V

Thermoplastic fibre glass reinforced acc. to UL-94 Cu alloy CuSn alloy Ag

INSULATOR PIN AND SOCKET

^{*} ≤ Ø 3.9 removal possible / ≤ Ø 4.8 removal not possible.

Module 4 contacts	Part number
Insulator	611.126.104.923.000
Spacer	611.126.111.923.000
Dummy contact	021.341.127.923.000

Description	Part number	Conductor cross-section mm ²	Termination AWG	Nomina Single contact A	I current ¹ Module fully equipped	Max. continuous current ² Single contact A	Contact resistance mΩ
Pin contact short	180.365.000.301.000		AWO	A	~	^	11152
			10		0.5		
Pin contact long	180.385.000.301.000		12	28	25	41	0.45
Socket contact	170.365.100.201.000						
Pin contact short ¹	180.910.000.301.000						
Pin contact long ¹	180.911.000.301.000	2.5		24	19	33.5	0.45
Socket contact ¹	170.910.100.201.000						
Pin contact short	182.607.000.301.000						
Pin contact long	182.604.000.301.000	1.5	14	18	15	27	0.45
Socket contact	172.604.100.201.000						
Pin contact short	182.606.000.301.000						
Pin contact long	182.603.000.301.000	1/0.75	18	16	13	23.5	0.45
Socket contact	172.603.100.201.000						
Pin contact short	182.608.000.301.000						
Pin contact long	182.605.000.301.000	0.5/0.38	20/22	10.5	8	15.5	0.55
Socket contact	172.605.100.201.000						
Pin contact short	180.820.000.301.000		PCB				
Pin contact long	180.821.000.301.000		termination	28	25	41	0.65
Socket contact	170.820.100.201.000		Ø 2.4 mm				

¹Non-magnetic version on request. ²Determined acc. to IEC 60512-5-1:2002 (DIN EN 60512-5-1:2003) at a temperature increase of 45 K. ³Definition max. continuous current see page <u>165</u>.

MODULE 3 CONTACTS

POWER

REMOVAL TOOL I (STRAIGHT)

Removal of the already assembled contact (incl. cable). PART NUMBER: 087.170.136.000.000

Removal of the already assembled contact (incl. cable). PART NUMBER: 087.170.366.000.000

Removal of the unassembled contact (with cable – wire may have removed) PART NUMBER: 087.611.001.001.000

For an overview of all tools please see from page <u>152</u>.

¹IEC 60664-1:2007 (VDE 0110-1:2008) see page <u>159</u>. ²See page <u>163</u>.

Contact diameter: 3 mm Mating cycles: minimum 100,000 Termination cross-section: from 0.38 to 6 mm²

TECHNICAL DATA

- The current load information is valid for single contacts or fully equipped modules. For use in connector systems, the load should be reduced according to VDE 0298-4:2013 (see page 168).
- Crimp information see page <u>146</u>.

TECHNICAL DATA

Voltage information¹

Operating voltage	500 V	200 V
Rated impulse voltage	3,000 V	3,000 V
Degree of pollution	2	3

Voltage information acc. to MIL²

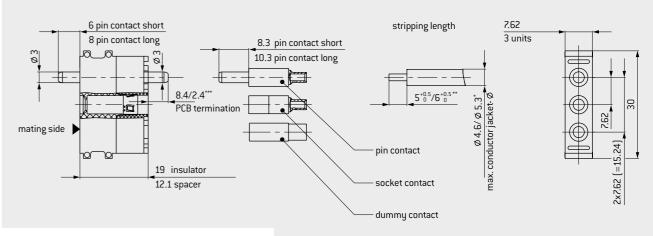
Operating voltage Test voltage

Mechanical data

Total mating force (average) Total sliding force (average) Contact diameter Operating temperature Mating cycles

Materials Insulator

Contact body Contact spring Contact finish


33.8 N / Module 20.3 N / Module 3.0 mm -40 °C to +125 °C minimum 100,000

1,200 V

3,600 V

Thermoplastic fibre glass reinforced acc. to UL-94 Cu alloy CuSn alloy Ag

INSULATOR PIN AND SOCKET

		* ≤ Ø 4.6 re
Module 3 contacts	Part number	** 5 ^{+0.5} : AWG
Insulator	611.127.103.923.000	6 ^{+0.5} :6 mr
Spacer	611.127.111.923.000	*** PCB termi
Dummy contact	021.341.128.923.000	in the terr

Description	Part number	Conductor cross-section mm ²	Termination AWG	Nomina Single contact A	Il current ¹ Module fully equipped A	Max. continuous current ² Single contact A	Contact resistance mΩ
Pin contact short	182.980.000.301.000						
Pin contact long	182.981.000.301.000	6		39	30	58	0.3
Socket contact	172.978.100.201.000						
Pin contact short ¹	180.366.000.301.000						
Pin contact long ¹	180.386.000.301.000	4		39	30	58	0.3
Socket contact ¹	172.366.100.201.000						
Pin contact short	180.546.000.301.000						
Pin contact long	180.576.000.301.000	2.5	25	25	21	37	0.3
Socket contact	170.546.100.201.000						
Pin contact short ¹	182.582.000.301.000						
Pin contact long	182.583.000.301.000	1.5	14	19	16	28	0.3
Socket contact ¹	172.582.100.201.000						
Pin contact short	182.584.000.301.000						
Pin contact long ¹	182.585.000.301.000	1/0.75	18	16.5	14	24.5	0.3
Socket contact ¹	172.584.100.201.000						
Pin contact short	182.586.000.301.000						
Pin contact long	182.587.000.301.000	0.5/0.38	20/22	11.5	9.5	17	0.4
Socket contact	172.586.100.201.000						
Pin contact short	182.571.000.301.000		PCB				
Pin contact long	182.572.000.301.000		termination	39	30	58	0.3
Socket contact	182.843.100.201.000		Ø 3.0 mm				

¹Non-magnetic version on request, ²Determined acc. to IEC 60512-5-1:2002 (DIN EN 60512-5-1:2003) at a temperature increase of 45 K. ³ Definition max. continuous current see page <u>165</u>.

removal possible / $\leq \emptyset$ 5.3 removal not possible.

G 22 – 14; 0.38 – 4 mm² m^2

nination / crimp termination at 6 mm², protection against contact rmination area recommended, e.g. heat-shrink tubing.

MODULE 3 CONTACTS

POWER

REMOVAL TOOL I (STRAIGHT)

Removal of the already assembled contact (incl. cable). PART NUMBER: 087.170.136.000.000

Removal of the unassembled contact (with cable – wire may have removed) PART NUMBER: 087.611.001.001.000

For an overview of all tools please see from page <u>152</u>.

Contact diameter: 3 mm Mating cycles: minimum 100,000 Current-carrying capacity¹: 58 A

TECHNICAL DATA

- The current load information is valid for single contacts or fully equipped modules. For use in connector systems, the load should be reduced according to VDE 0298-4:2013 (see page 168).
- Crimp information see page <u>146</u>.

TECHNICAL DATA

Voltage information²

Operating voltage	2,500 V	1,000 V
Rated impulse voltage	10,000 V	8,000 V
Degree of pollution	2	3

2,500 V

7,500 V

Voltage information acc. to MIL³

Operating voltage Test voltage

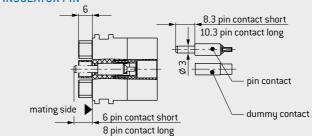
Mechanical data

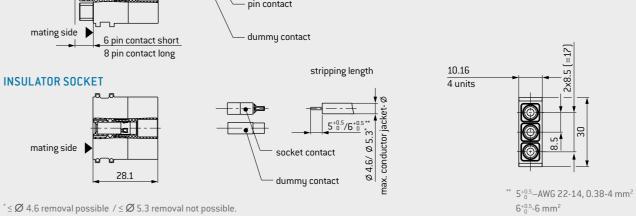
Total mating force (average) Total sliding force (average) Contact diameter

Operating temperature

Mating cycles

Materials


Insulator


Contact body Contact spring Contact finish

33.8 N / Module 20.3 N / Module 3 mm -40 °C to +125 °C acc. to UL 1977, Second Edition, max. 75 °C minimum 100,000

Thermoplastic fibre glass reinforced acc. to UL-94 Cu alloy CuSn alloy Ag

INSULATOR PIN

 $\leq \emptyset$ 4.6 removal possible / $\leq \emptyset$ 5.3 removal not possible.

Module 3 contacts	Part number
Insulator socket	610.162.103.923.000
Insulator pin	611.162.103.923.000
Dummy contact	021.341.128.923.000

Description	Part number	Conductor cross-section mm ²	Termination AWG	Nomina Single contact A	l current ¹ Module fully equipped A	Max. continuous current ² Single contact A	Contact resistance mΩ
Pin contact	182.980.000.301.000						
Pin contact long	182.981.000.301.000	6		39	30	58	0.3
Socket contact	172.978.100.201.000	·					0.0
Pin contact short ¹	180.366.000.301.000						
Pin contact long ¹	180.386.000.301.000	4		39	30	58	0.3
Socket contact ¹	172.366.100.201.000						
Pin contact short	180.546.000.301.000						
Pin contact long	180.576.000.301.000	2.5		25	21	37	0.3
Socket contact	170.546.100.201.000						
Pin contact short ¹	182.582.000.301.000						
Pin contact long	182.583.000.301.000	1.5	14	19	16	28	1
Socket contact ¹	172.582.100.201.000						
Pin contact short	182.584.000.301.000						
Pin contact long ¹	182.585.000.301.000	1/0.75	18	16.5	14	24.5	1
Socket contact ¹	172.584.100.201.000						
Pin contact short	182.586.000.301.000						
Pin contact long	182.587.000.301.000	0.5/0.38	20/22	11.5	9.5	17	1
Socket contact	172.586.100.201.000						

¹Non-magnetic version on request. ²Determined acc. to IEC 60512-5-1:2002 (DIN EN 60512-5-1:2003) at a temperature increase of 45 K. ³ Definition max. continuous current see page <u>165</u>.

¹Definition max. continuous current see page <u>165</u>. ²IEC 60664-1:2007 (VDE 0110-1:2008) see page <u>159</u>. ³See page <u>163</u>.

MODULES

MODULE 2 CONTACTS

POWER

REMOVAL TOOL

Removal of the already assembled contact (incl. cable). PART NUMBER: 087.170.391.000.000

For an overview of all tools please see from page <u>152</u>.

Contact diameter: 5 mm Mating cycles: minimum 100.000 Current-carrying capacity¹: 119 A

TECHNICAL DATA

- The current load information is valid for single contacts or fully equipped modules. For use in connector systems, the load should be reduced according to VDE 0298-4:2013 (see page 168).
- When automatic docking due to the high mating forces and the high cable cross sections we recommend the assembly in the ODU-MAC P (Power) frame (see page <u>39</u>).
- Crimp information see page <u>146</u>.
- Contacts and insulators up to 200 °C on request.

TECHNICAL DATA

Voltage information ²		
Operating voltage	1,000 V	250 V
Rated impulse voltage	4,000 V	4,000 V
Degree of pollution	2	3

Voltage information acc. to MIL³

Operating voltage Test voltage

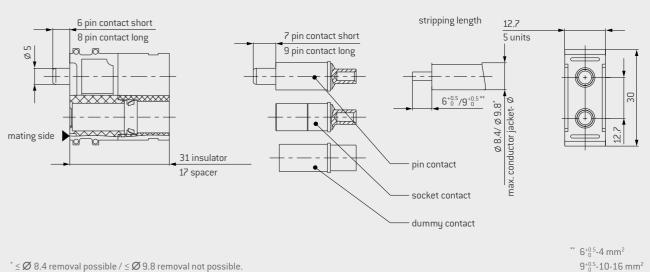
Mechanical data

Total mating force (average) Total sliding force (average) Contact diameter Operating temperature Mating cycles

Materials

Insulator

Contact body Contact spring Contact finish


45 N / Module 36 N / Module 5 mm -40 °C to +125 °C minimum 100,000

1,250 V

3,750 V

Thermoplastic fibre glass reinforced acc. to UL-94 Cu alloy CuSn alloy Ag

INSULATOR PIN AND SOCKET

Module 2 contacts	Part number
Insulator	611.129.102.923.000
Spacer	611.129.111.923.000
Dummy contact	021.341.130.923.000

Description	Part number	Conductor cross-section mm ²	Nenn Single contact A	Strom ¹ Module fully equipped A	Max. continuous current ² Single contact A	Contact resistance mΩ
Pin contact short	182.891.000.301.000					
Pin contact long	182.892.000.301.000	16	80	70	119	0.21
Socket contact	172.891.100.201.000					
Pin contact short	180.490.000.301.000					
Pin contact long	180.491.000.301.000	10	65	57	97	0.21
Socket contact	170.490.100.201.000					
Pin contact short	180.369.000.301.000					
Pin contact long	180.389.000.301.000	4	39	34	58	0.21
Socket contact	170.369.100.201.000					

MODULE 2 CONTACTS FOR HIGH **CURRENT CONTACTS**

HIGH CURRENT

REQUIRED ASSEMBLY TOOL

For screwing and releasing the contacts.

PART NUMBER: 087.611.002.001.000 Locking torque: 3.5 Nm ± 0.5 Nm

For an overview of all tools please see from page <u>152</u>.

Contact diameter: 8 mm Mating cycles¹: minimum 100,000 Current-carrying capacity²: 142 A

TECHNICAL DATA

- The current load information is valid for single contacts or fully equipped modules. For use in connector systems, the load should be reduced according to VDE 0298-4:2013 (see page 168).
- When automatic docking due to the high mating forces and the high cable cross sections we recommend the assembly in the ODU-MAC P (Power) frame (see page <u>39</u>).
- Crimp information see page 146

TECHNICAL DATA

Voltage information ³		
Operating voltage	500 V	200 V
Rated impulse voltage	3,000 V	3,000 V
Degree of pollution	2	3

Voltage information acc. to MIL⁴

Operating voltage Test voltage

Mechanical data

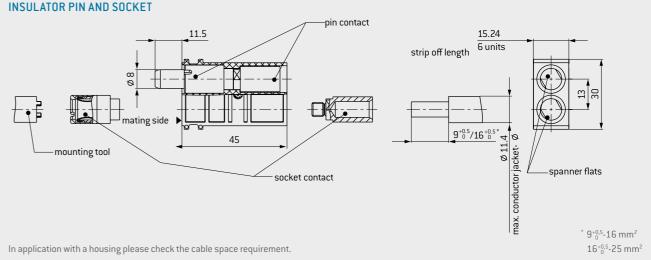
Total mating force (average) Total sliding force (average) Contact diameter Operating temperature Mating cycles¹

Materials

Insulator Contact body Contact spring

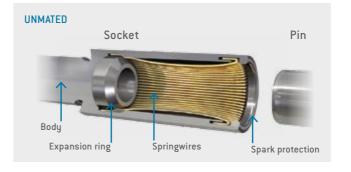
Contact finish

39 N / Module 8 mm -40 °C to +125 ° C minimum 100,000 Thermoplastic


54 N / Module

700 V

2,100 V


fibre glass reinforced acc. to UL-94 Cu alloy CuSn alloy Ag

INSULATOR PIN AND SOCKET

ODU SPRINGTAC° (CONTACTS WITH SPRINGWIRE TECHNOLOGY)

ODU SPRINGTAC offers a large number of contact surfaces. The wires are mounted individually and connected with a lathe-turned body. The springwires contact and flex independently from one another (see also page 24).

Module 2 contacts	Part number
Insulator	611.173.102.923.000

Description	Part number	Conductor cross-section ¹ mm ²	Nominal Single contact A	current ² Module fully equipped A	Max. continu- ous current ³ Single contact A	Contact resistance mΩ
Pin contact	181.873.100.200.000	25	100	95	142	0.2
Socket contact	170.045.100.201.000	25	100	90	142	0.2
Pin contact	181.872.100.200.000	10	75	70	111	0.2
Socket contact	171.045.100.201.000	16	75	70	111	0.2

¹Higher mating cycles by easy exchange of the wear parts (pin/socket from front) possible. The termination area remains unaffected, because of two-part contact. ²Definition max. continuous current see page <u>165</u>. ³ IEC 60664-1:2007 (VDE 0110-1:2008) see page <u>159</u>. ⁴See page <u>163</u>.

¹ Extra fine wire acc. to IEC 60228:2004 (VDE 0295:2005; class 5), class 5.² Determined acc. to IEC 60512-5-1:2002 (DIN EN 60512-5-1:2003) at a temperature increase of 45 K.³ Definition max. continuous current see page <u>165</u>.

MODULE 2 CONTACTS

ODU LAMTAC° (contacts with lamella technology).

HIGH CURRENT

REQUIRED ASSEMBLY TOOL

For screwing and releasing the contacts.

PART NUMBER: 087.611.002.001.000 Locking torque: 3.5 Nm ± 0.5 Nm

For an overview of all tools please see from page <u>152</u>.

Contact diameter: 8 mm Mating cycles¹: minimum 10,000 Current-carrying capacity²: 154 A

TECHNICAL DATA

- The current load information is valid for single contacts or fully equipped modules. For use in connector systems, the load should be reduced according to VDE 0298-4:2013 (see page 168).
- When automatic docking due to the high mating forces and the high cable cross sections we recommend the assembly in the ODU-MAC P (Power) frame (see page <u>39</u>).
- Crimp information see page 146

TECHNICAL DATA

Voltage information ³		
Operating voltage	500 V	200 V
Rated impulse voltage	3,000 V	3,000 V
Degree of pollution	2	3

Voltage information acc. to MIL^4

Operating voltage Test voltage

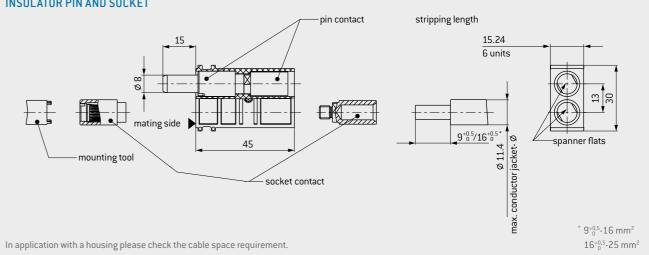
Mechanical data

Total mating force (average) Total sliding force (average) Contact diameter Operating temperature Mating cycles

Materials Insulator

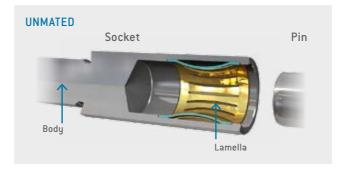
Contact body Contact lamella Contact finish

45 N / Module 8 mm -40 °C to +125 °C minimum 10,000 Thermoplastic


60 N / Module

fibre glass reinforced acc. to UL-94 Cu alloy CuBe alloy Ag

900 V

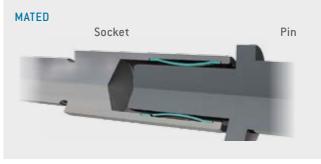

2,700 V

INSULATOR PIN AND SOCKET

ODU LAMTAC[®] (CONTACTS WITH LAMELLA TECHNOLOGY)

In comparison to the ODU SPRINGTAC contact, ODU LAMTAC offers a lower number of contact surfaces. One or more of the stamped lamellas are mounted in a lathe-turned body (see also page 25).

Module 2 contacts	Part number
Insulator	611.161.102.923.000


Description	Part number	Conductor cross-section ¹ mm ²	Nominal Single contact A	current ² Module fully equipped A	Max. continu- ous current ³ Single contact A	Contact resistance mΩ
Pin contact	181.874.100.200.000	25	105	100	154	0.2
Socket contact	178.874.100.201.000	25	105	100	154	0.2
Pin contact	181.875.100.200.000	16	00	OF	122	0.2
Socket contact	178.875.100.201.000	16	90	85	133	0.2

¹Higher mating cycles by easy exchange of the wear parts (pin/socket from front) possible. The termination area remains unaffected, because of two-part contact. ²Definition max. continuous current see page <u>165</u>. ³ IEC 60664-1:2007 (VDE 0110-1:2008) see page <u>159</u>. ⁴See page <u>163</u>.

¹ Extra fine wire acc. to IEC 60228:2004 (VDE 0295:2005; class 5), class 5.² Determined acc. to IEC 60512-5-1:2002 (DIN EN 60512-5-1:2003) at a temperature increase of 45 K.³ Definition max. continuous current see page <u>165</u>.

MODULE 1 CONTACT

ODU LAMTAC[®] (Contacts with lamella technology).

HIGH CURRENT

REQUIRED ASSEMBLY TOOL

For screwing and releasing the contacts.

For contact diameter 10 mm. PART NUMBER: 087.611.003.001.000 Locking torque: 3.5 Nm ± 0.5 Nm

For contact diameter 12 mm. PART NUMBER: 087.611.004.001.000 Locking torque: 3.5 Nm ± 0.5 Nm

For an overview of all tools please see from page <u>152</u>.

Contact diameter: 10 mm or 12 mm Mating cycles¹: minimum 10,000 Current-carrying capacity²: max. 220 A

TECHNICAL DATA

- The current load information is valid for single contacts or fully equipped modules. For use in connector systems, the load should be reduced according to VDE 0298-4:2013 (see page 168).
- When automatic docking due to the high mating forces and the high cable cross sections we recommend the assembly in the ODU-MAC P (Power) frame (see page <u>39</u>).
- Crimp information see page 146

TECHNICAL DATA

Voltage information³

Operating voltage		
Ø10 mm	250 V	160 V
Ø 12 mm	200 V	63V
Rated impulse voltage		
Ø10mm	4,000 V	4,000 V
Ø 12 mm	3,000 V	3,000 V
Degree of pollution		
arnothing 10 mm and $arnothing$ 12 mm	2	3

Voltage information acc. to MIL⁴

Operating voltage	
Ø10 mm	2,000 V
Ø12 mm	1,500 V
Test voltage	
Ø10 mm	6,000 V
Ø12 mm	4,500 V

Mechanical data

Total mating force (average) Ø10 mm Ø12 mm Total sliding force (average) Ø10 mm Ø12 mm Contact diameter Operating temperature Mating cycles

Materials

- Insulator
- Contact body Contact lamella Contact finish

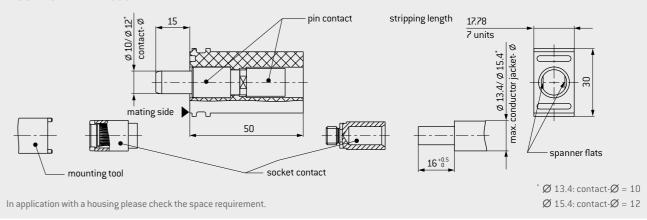
minimum 10,000 Thermoplastic fibre glass reinforced acc. to UL-94 Cu alloy CuBe alloy

Ag

33 N / Module

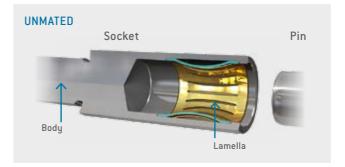
45 N / Module

24 N / Module


30 N / Module

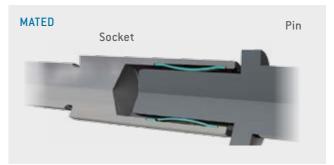
10 mm or 12 mm

-40 °C to +125 °C


¹Higher mating cycles by easy exchange of the wear parts (pin/socket from front) possible. The termination area remains unaffected, because of two-part contact. ²Definition max. continuous current see page <u>165</u>. ³ IEC 60664-1:2007 (VDE 0110-1:2008) see page <u>159</u>. ⁴See page <u>163</u>.

INSULATOR PIN AND SOCKET

ODU LAMTAC° (CONTACTS WITH LAMELLA TECHNOLOGY)


In comparison to the ODU SPRINGTAC contact, ODU LAMTAC offers a lower number of contact surfaces. One or more of the stamped lamellas are mounted in a lathe-turned body (see also page 25).

Module 1 contact	Part number				
Insulator for contact Ø 10 mm	611.169.101.923.000				
Insulator for contact Ø 12 mm	611.172.101.923.000				
Description	Part number	Conductor cross-section ¹ mm ²	Nominal current ² Single contact A	Max. continuous current ³ Single contact A	Contact resistance mΩ
Pin contact Ø 10 mm	181.878.100.200.000	35	120	170	0.45
Socket contact Ø 10 mm	178.878.100.200.000	35	120	179	0.15
Pin contact Ø 10 mm	181.946.100.200.000	25	110	163	0.15
Socket contact Ø 10 mm	178.954.100.201.000	25	110	105	0.15
Pin contact Ø 12 mm	181.943.100.200.000	50	145	220	0.1
Socket contact Ø 12 mm	178.943.100.201.000	50	145	220	0.1
Pin contact Ø 12 mm	181.945.100.200.000	35	125	200	0.1
Socket contact Ø 12 mm	178.953.100.201.000	35	135	200	0.1
Pin contact Ø 12 mm	181.944.100.200.000	25	115	170	0.1
Socket contact Ø 12 mm	178.948.100.201.000	25	115	172	0.1

¹ Extra fine wire acc. to IEC 60228:2004 (VDE 0295:2005; class 5), class 5.² Determined acc. to IEC 60512-5-1:2002 (DIN EN 60512-5-1:2003) at a temperature increase of 45 K. ³ Definition max. continuous current see page <u>165</u>.

MODULE 4 CONTACTS

HIGH VOLTAGE

REMOVAL TOOL I (STRAIGHT)

Removal of the already assembled contact (incl. cable). PART NUMBER: 087.170.138.000.000

Removal of the unassembled contact (with cable – wire may have removed) PART NUMBER: 087.611.001.001.000

For an overview of all tools please see from page <u>152</u>.

Contact diameter: 1.5 mm Mating cycles: minimum 100,000 Operating voltage: 2,500 V

TECHNICAL DATA

- The current load information is valid for single contacts or fully equipped modules. For use in connector systems, the load should be reduced according to VDE 0298-4:2013 (see page 168).
- Crimp information see page <u>146</u>.

TECHNICAL DATA

Voltage information ¹	
Operating voltage	

0			
Operating voltage	2,500 V	1,000 V	
Rated impulse voltage	10,000 V	8,000 V	
Degree of pollution	2	3	

Voltage information acc. to MIL²

Operating voltage Test voltage

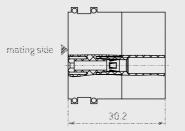
Mechanical data Total mating force (average) Total sliding force (average) Contact diameter Operating temperature Mating cycles

Materials Insulator

Con	tact body
Con	tact spring
Con	tact finish
C	ontact body
С	ontact spring

18 N / Module 12 N / Module 1.5 mm -40 °C to +125 °C minimum 100,000

2,500 V


7,500 V

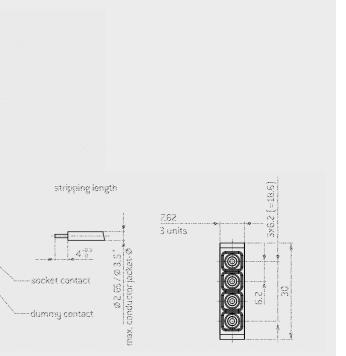
Thermoplastic fibre glass reinforced acc. to UL-94 Cu alloy CuSn alloy Au over Ni Ag

IN

**** XXXXXXXXX *******

INSULATOR SOCKET

*≤ \emptyset 2.65 removal possible / ≤ \emptyset 3.5 removal not possible.


Module 4 contacts	Part number
Insulator socket	610.159.104.923.000
Insulator pin	611.159.104.923.000
Dummy contact	021.341.125.923.000

Description	Part number	Conductor Termination cross-section		Nomina _{Single}	Il current ²	Max. continu- ous current ³ Single contact	Contact resistance
		mm²	AWG/mm	contact A	equipped A	A	mΩ
Pin contact short ¹	180.363.000.307.000						
Pin contact long ¹	180.383.000.307.000	1.5	14	18	14.5	27	0.95
Socket contact ¹	170.363.700.201.000						
Pin contact short	180.543.000.307.000						
Pin contact long	180.573.000.307.000		16	18	14.5	27	0.95
Socket contact	170.543.700.201.000						
Pin contact short ¹	180.545.000.307.000						
Pin contact long ¹	180.575.000.307.000	1	18	16	13	22.5	0.95
Socket contact ¹	170.545.700.201.000						
Pin contact short ¹	180.541.000.307.000						
Pin contact long ¹	180.571.000.307.000	0.5/0.38	20/22	10	.0 8	15	0.95
Socket contact ¹	170.541.700.201.000						
Pin contact short	180.857.000.307.000						
Pin contact long	180.856.000.307.000	0.25/0.08	24/28	6	6 6	9	0.95
Socket contact	170.857.700.201.000						

¹Non-magnetic version on request, ²Determined acc. to IEC 60512-5-1:2002 (DIN EN 60512-5-1:2003) at a temperature increase of 45 K. ³ Definition max. continuous current see page <u>165</u>.

¹IEC 60664-1:2007 (VDE 0110-1:2008) see page <u>159</u>. ²See page <u>163</u>.

MODULE 1 CONTACT

HIGH VOLTAGE

Contact diameter: 2 mm Mating cycles: minimum 10,000 Operating voltage: 6,300 V

TECHNICAL DATA

- The current load information is valid for single contacts or fully equipped modules. For use in connector systems, the load should be
- reduced according to VDE 0298-4:2013 (see page 168).
- Center contact soldered. • Outer contact crimped.
- Recommended cable construction see page <u>105</u>.

TECHNICAL DATA

Voltage information¹

Operating voltage	6,300 V	2,500 V
Rated impulse voltage	20,000 V	20,000 V
Degree of pollution	2	3
Clearance distance	> 32 mm	
Creepage distance	> 32 mm	

Test of the partial discharge voltage (PDV) acc. to VDE

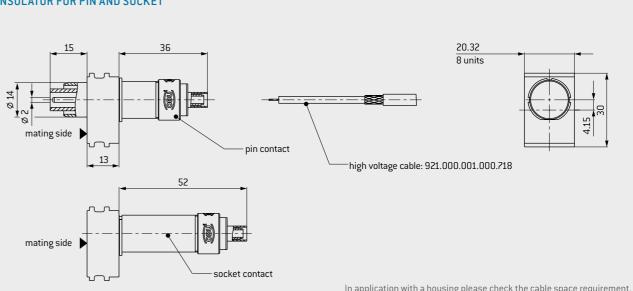
PDV inception voltage PDV extinction voltage

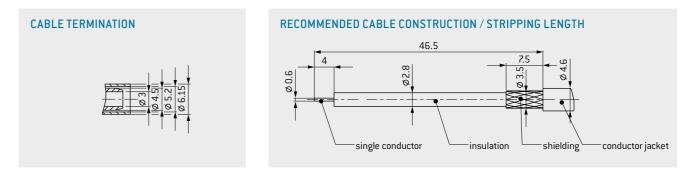
Mechanical data

Total mating force (average) Total sliding force (average) Contact diameter Operating temperature Mating cycles

Materials

- Insulator
- Contact body / insulator Contact spring Contact finish Outer contact Center contact


17 N / Module 15 N / Module 2 mm -40 °C to +125 °C minimum 10,000


6.000 V

5.700 V

Thermoplastic fibre glass reinforced acc. to UL-94 Cu alloy / PTFE CuBe alloy gal. Ni gal. Ag

INSULATOR FOR PIN AND SOCKET

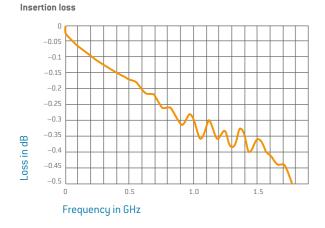
Module 1 contact	Part number
Insulator	611.171.101.923.000

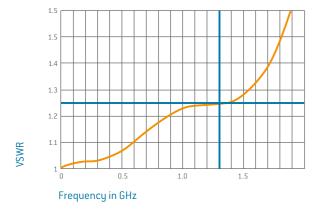
Description	Part number	Part number crimp insert	Conductor cross-section AWG / mm²	Nominal current A	Contact resistance average mΩ
Pin contact	122.138.001.201.000	082.000.039.106.000	22/24	3.5	0.4
Socket contact	122.138.002.201.000	062.000.039.106.000	22/24	5.5	0.4
High voltage line ¹	921.000.001.000.718		0.25		
Crimping tool for shielding sleeve	080.000.039.000.000				

¹IEC 60664-1:2007 (VDE 0110-1:2008) see page <u>159</u>.

MODULES

In application with a housing please check the cable space requirement.


MODULE 4 CONTACTS FOR 50 Ω


COAX

HIGH FREQUENCY CHARACTERISTICS FOR 50 Ω COAX CONTACTS^1

Voltage standing-wave ratio VSWR

 1 Loss levels depend on used conductor type at a VSWR of 1.25. Further are available on request. Tested with per 2 x 5 cm conductor length. 2 See from page <u>163</u>.

Mating cycles: minimum 60,000 Non-magnetic Frequency range¹: 0-1.3 GHz

TECHNICAL DATA

• Crimp information see page <u>146</u>.

TECHNICAL DATA

Voltage information

Frequency range Insulation resistance Voltage information acc. to MIL² Operating voltage Test voltage Mechanical data Total mating force (average) Total sliding force (average) Operating temperature Mating cycles

Materials Insulator

- Contact body / insulator Contact spring Contact finish
- REMOVAL TOOL I (STRAIGHT)

 $\begin{array}{l} \text{0-1.3 GHz}^1 \\ \text{>} 100 \ \text{G}\Omega \end{array}$

350 V

1.050 V

17.8 N / Module

15.3 N / Module

-40 °C to +125 °C

minimum 60,000

Thermoplastic

acc. to UL-94

Cu alloy / PTFE

CuSn/CuBe alloy

Au over CuSnZn

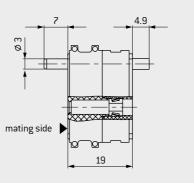
fibre glass reinforced

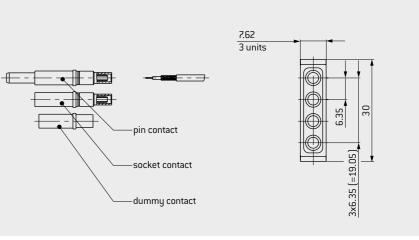
Removal of the already assembled contact (incl. cable). PART NUMBER: 087.170.139.000.000

REMOVAL TOOL I (ANGLED)

Removal of the already assembled contact (incl. cable). PART NUMBER: 087.170.365.000.000

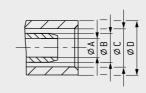
REMOVAL TOOL II

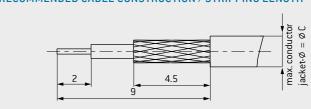



Removal of the not assembled contact (with cable - wire may have removed).

PART NUMBER: 087.611.001.001.000

For an overview of all tools please see from page <u>152</u>.


INSULATOR FOR PIN AND SOCKET



CABLE TERMINATION

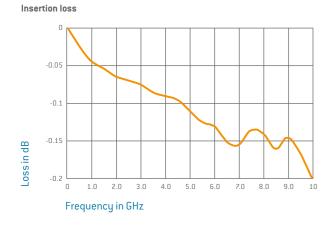
RECOMMENDED CABLE CONSTRUCTION / STRIPPING LENGTH

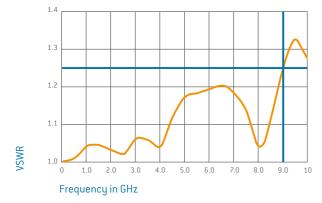
Module 4 contacts	Part number
Insulator	611.149.104.923.000
Dummy contact	021.341.127.923.000

Description	Part number	Charac- teristic imped- ance Ω	Fre- quency range _{GHz}	Cable ¹	A	В	C	D	Part number crimp inserts
Pin contact	122.120.001.257.000		1.3	RG 178/RG 196	1.1	1.7	2.25	3.2	082.000.039.101.000
Pin contact	122.120.003.257.000	50	0.8	RG 174 / RG 188 / RG 316 (75 Ω: RG 179, RG 187)	1.75	2.7	3.2	3.8	082.000.039.102.000
Pin contact	122.120.011.257.000		0.85	G 02232 (H+S) ²	1.75	2.7	3.5	4.3	082.000.039.103.000
Socket contact	122.120.002.257.000		1.3	RG 178/RG 196	1.1	1.7	2.25	3.2	082.000.039.101.000
Socket contact	122.120.004.257.000	50	0.8	RG 174 / RG 188 / RG 316 (75 Ω: RG 179, RG 187)	1.75	2.7	3.2	3.8	082.000.039.102.000
Socket contact	122.120.012.257.000		0.85	G 02232 (H+S) ²	1.75	2.7	3.5	4.3	082.000.039.103.000
Crimping tool for shielding sleeve	080.000.039.000.000								

¹Special lines and alternative models on request. ²Removal tool II is not possible due to the conductor diameter.

le of Contents


MODULE 2 CONTACTS FOR 50 Ω WITH SMA TERMINATION


COAX

HIGH FREQUENCY CHARACTERISTICS FOR 50 Ω COAX CONTACTS 1

Voltage standing-wave ratio VSWR

Mating cycles: minimum 100,000 Frequency range¹: 0-9.0 GHz

0-9.0 GHz

 $> 100 \, \text{G}\Omega$

350 V 1,050 V

11.9 N / Module

8.5 N / Module

Thermoplastic fibre glass reinforced

acc. to UL-94

Cu alloy / PTFE

Au over Ni

Ni

CuSn/CuBe alloy

-40 °C to +125 °C minimum 100,000

TECHNICAL DATA

Voltage information Frequency range¹

Insulation resistance Voltage information acc. to MIL² Operating voltage Test voltage

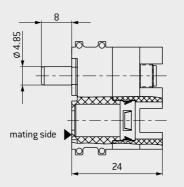
Mechanical data

Total mating force (average) Total sliding force (average) Operating temperature Mating cycles

Materials

Insulator

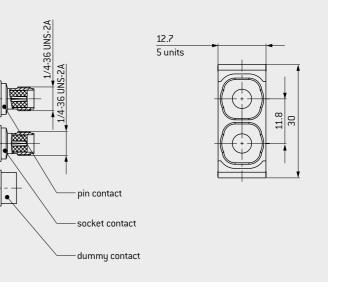
Contact body/insulator Contact spring Contact finish Center contact Outer contact


REMOVAL TOOL

PART NUMBER: 087.170.391.000.000

For an overview of all tools please see from page <u>152</u>.

INSULATOR PIN AND SOCKET

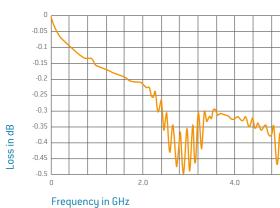

Module 2 contacts	Part number
Insulator	611.152.102.923.000
Dummy contact	021.341.177.300.000

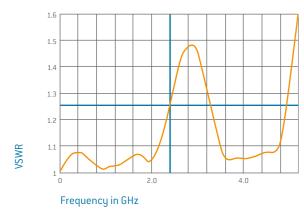
Description	Part number
Pin contact	122.349.001.207.000
Socket contact	122.349.002.207.000

¹Loss levels depend on used conductor type at a VSWR of 1.25. Further are available on request, Tested with per 2 x 5 cm conductor length.² See from page <u>163</u>.

MODULES

Charac- teristic impedance Ω	Frequency range _{GHz}
50	9.0


MODULE 2 CONTACTS FOR 50 Ω


COAX

HIGH FREQUENCY CHARACTERISTICS FOR 50 Ω COAX CONTACTS^1

Voltage standing-wave ratio VSWR

Mating cycles: minimum 100,000 Frequency range¹: 0-2.4 GHz

TECHNICAL DATA

• Crimp information see page <u>146</u>.

TECHNICAL DATA

Voltage information

Frequency range¹ Insulation resistance

 $> 100 \ \text{G}\Omega$

Voltage information acc. to MIL² Operating voltage Test voltage

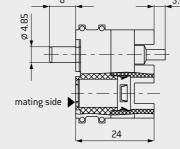
Mechanical data

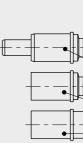
Total mating force (average) Total sliding force (average) Operating temperature Mating cycles

Materials

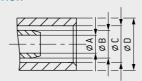
Insulator

- Contact body Contact spring Contact finish Center contact Outer contact
- acc. to UL-94 CuSn-/CuBe alloy





PART NUMBER: 087.170.391.000.000


For an overview of all tools please see from page <u>152</u>.

INSULATOR FOR PIN AND SOCKET

CABLE TERMINATION

Module 2 contacts	Part number
Insulator	611.152.102.923.000
Dummy contact	021.341.177.300.000

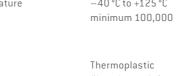
Description	Part number	Charac- teristic impedance Ω	Fre- quency range _{GHz}	Cable ¹	A	В	С	D	Part number crimp inserts
Pin contact	122.346.001.207.000		1.25	RG 178 / RG 196	1.1	1.7	2.25	3.2	082.000.039.101.000
Pin contact	122.346.003.207.000		2.1	RG 174 / RG 188 / RG 316	1.75	2.7	3.2	3.8	082.000.039.102.000
Pin contact	122.346.005.207.000	50		RG 122 (2YCY 0.4/2.5-75 Ω)	2.75	3.7	4.2	5	082.000.039.104.000
Pin contact	122.346.007.207.000			RG 58	3.15	4.5	5.2	6.15	082.000.039.106.000
Pin contact	122.346.009.207.000	2.4	2.4	RG 223	3.15	4.5	5.5	6.15	082.000.039.108.000
Pin contact	122.346.011.207.000		2.1	G 02232 D (H+S)/RG 316 D	1.75	2.7	3.5	4.3	082.000.039.103.000
Socket contact	122.346.002.207.000		1.25	RG 178/RG 196	1.1	1.7	2.25	3.2	082.000.039.101.000
Socket contact	122.346.004.207.000			RG 174 / RG 188 / RG 316	1.75	2.7	3.2	3.8	082.000.039.102.000
Socket contact	122.346.006.207.000	50	2.1	RG 122 (2YCY 0.4/2.5-75 Ω)	2.75	3.7	4.2	5	082.000.039.104.000
Socket contact	122.346.008.207.000		2.4	RG 58	3.15	4.5	5.2	6.15	082.000.039.106.000
Socket contact	122.346.010.207.000		2.4	RG 223	3.15	4.5	5.5	6.15	082.000.039.108.000
Socket contact	122.346.012.207.000		2.1	G 02232 D (H+S)/ RG 316 D	1.75	2.7	3.5	4.3	082.000.039.103.000
Crimping tool for shielding sleeve									

¹Loss levels depend on used conductor type at a VSWR of 1.25. Further are available on request. Tested with per 2 x 5 cm conductor length.² See from page <u>163</u>.

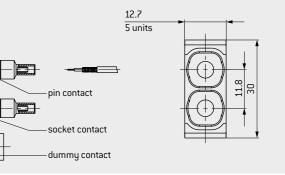
¹Special lines on request.

Insertion loss

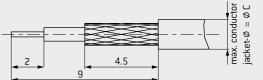
11.9 N / Module 8.5 N / Module -40 °C to +125 °C


0-2.4 GHz

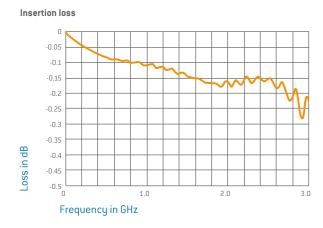
400 V

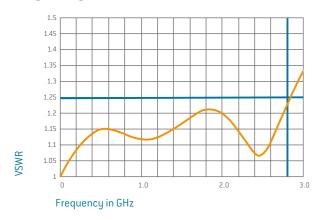

1,200 V

Thermoplastic fibre glass reinforced Cu alloy / PTFE


Au over Ni Ni

RECOMMENDED CABLE CONSTRUCTION / STRIPPING LENGTH


MODULE 2 CONTACTS FOR 50 Ω AND HIGH VOLTAGE


COAX

HIGH FREQUENCY CHARACTERISTICS FOR 50 Ω COAX CONTACTS 1

Voltage standing-wave ratio VSWR

Mating cycles: minimum 100,000 Non-magnetic Frequency range¹: 0-2.8 GHz

TECHNICAL DATA

• Crimp information see page <u>146</u>.

TECHNICAL DATA

Voltage information Frequency range¹

Insulation resistance

Voltage information acc. to MIL² Operating voltage Test voltage

Mechanical data

Total mating force (average) Total sliding force (average) Operating temperature Mating cycles

Materials

Insulator

Contact body Contact spring Contact finish Thermoplastic fibre glass reinforced acc. to UL-94 Cu alloy / PTFE CuSn / CuBe alloy Au over CuSnZn

0-2.8 GHz

 $>100\,\text{G}\Omega$

850 V

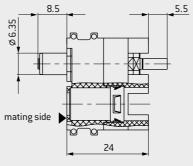
2,600 V

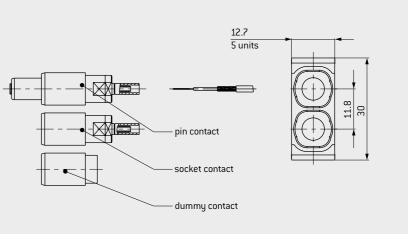
13.9 N / Module

9.9 N / Module

-40 °C to +125 °C

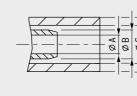
minimum 100,000


REMOVAL TOOL



PART NUMBER: 087.170.391.000.000

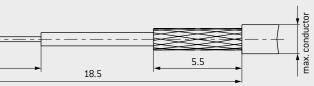
For an overview of all tools please see from page <u>152</u>.


INSULATOR FOR PIN AND SOCKET

CABLE TERMINATION

RECOMMENDED CABLE CONSTRUCTION / STRIPPING LENGTH

Module 2 contacts	Part number
Insulator	611.155.102.923.000
Dummy contact	021.341.179.923.000

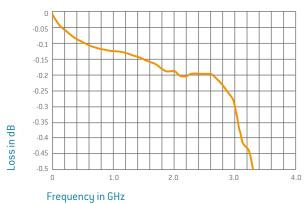

Description	Part number	Charac- teristic impedance Ω	Fre- quency range _{GHz}	Cable ¹	A	В	C	D	Part number crimp inserts
Pin contact	122.126.001.257.000		0.3	RG 178 / RG 196	1.1	1.7	2.25	3.2	082.000.039.101.000
Pin contact	122.126.003.257.000	50	2.0	RG 174 / RG 188 / RG 316	1.75	2.7	3.2	3.8	082.000.039.102.000
Pin contact	122.126.013.257.000		2.8	RG 223	3.15	4.5	5.9	6.75	082.000.039.106.000
Pin contact	122.126.007.257.000		2.6	RG 58	3.15	4.5	5.2	6.15	082.000.039.108.000
Socket contact	122.126.002.257.000		0.3	RG 178/RG 196	1.1	1.7	2.25	3.2	082.000.039.101.000
Socket contact	122.126.004.257.000	50	2.0	RG 174 / RG 188 / RG 316	1.75	2.7	3.2	3.8	082.000.039.102.000
Socket contact	122.126.014.257.000		2.8	RG 223	3.15	4.5	5.9	6.75	082.000.039.108.000
Socket contact	122.126.008.257.000		2.6	RG 58	3.15	4.5	5.2	6.15	082.000.039.106.000
Crimping tool for shielding sleeve	080.000.039.000.000								

¹Loss levels depend on used conductor type at a VSWR of 1.25. Further are available on request, Tested with per 2 x 5 cm conductor length.² See from page <u>163</u>.

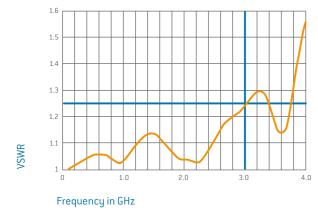
¹ Special lines on request.

112

MODULE 2 CONTACTS FOR 75 Ω



COAX



HIGH FREQUENCY CHARACTERISTICS FOR 75 Ω COAX CONTACTS 1

Voltage standing-wave ratio VSWR

Mating cycles: minimum 100,000 Frequency range¹: 0-3.0 GHz

TECHNICAL DATA

• Crimp information see page <u>146</u>.

TECHNICAL DATA

Voltage information Frequency range¹

Insulation resistance Voltage information acc. to MIL²

Operating voltage 475 V Test voltage 1,425 V

0-3.0 GHz

 $> 100 \, \text{G}\Omega$

13.3 N / Module

9.5 N / Module

Thermoplastic

acc. to UL-94

Cu alloy/PTFE

Au over Ni

Ni

CuSn/CuBe alloy

fibre glass reinforced

-40 °C to +125 °C

minimum 100,000

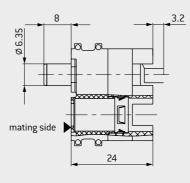
Mechanical data

Total mating force (average) Total sliding force (average) Operating temperature Mating cycles

Materials

Insulator

Contact body Contact spring Contact finish Center contact Outer contact

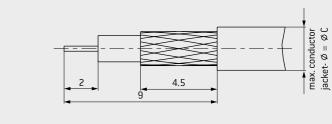

REMOVAL TOOL



PART NUMBER: 087.170.391.000.000

For an overview of all tools please see from page <u>152</u>.

INSULATOR FOR PIN AND SOCKET



CABLE TERMINATION

RECOMME

=		Γ '	F
 ØÅ	øВ	СØС	бD
	_	<u> </u>	

Module 2 contacts	Part number
Insulator	611.155.102.923.000
Dummy contact	021.341.179.923.000

Description	Part number	Charac- teristic impedance Ω	Fre- quency range _{GHz}	Cable ¹	A	В	C	D	Part number crimp inserts
Pin contact	122.348.003.207.000		3.0	RG 179 / RG 187	1.75	2.7	3.2	3.8	082.000.039.102.000
Pin contact	122.348.007.207.000	75	0.55	G 03233 (H+S)	3.15	4.5	5.2	6.15	082.000.039.106.000
Pin contact	122.348.009.207.000		3.0	RG 59	4	5.4	6.3	7.2	082.000.039.109.000
Socket contact	122.348.004.207.000		3.0	RG 179 / RG 187	1.75	2.7	3.2	3.8	082.000.039.102.000
Socket contact	122.348.008.207.000	75	0.55	G 03233 (H+S)	3.15	4.5	5.2	6.15	082.000.039.106.000
Socket contact	122.348.010.207.000		3.0	RG 59	4	5.4	6.3	7.2	082.000.039.109.000
Crimping tool for shielding sleeve	080.000.039.000.000								

¹Loss levels depend on used conductor type at a VSWR of 1.25. Further are available on request. Tested with per 2 x 5 cm conductor length.² See from page <u>163</u>.

¹Special lines on request.

MODULES

RECOMMENDED CABLE CONSTRUCTION / STRIPPING LENGTH

MODULE 2 CONTACTS FOR PNEUMATIC VALVES INNER DIAMETER OF TUBE MAX. 4 MM

PNEUMATIC MODEL

Non shut-off

Shut-off

FLOW RATE DIAGRAM

The flow rate diagram refers to the locking version with a maximum gap between socket and pin piece of ≤ 0.5 mm. If the clearance is modified, the drop of pressure increases.

Operating pressure: 20 bar Mating cycles¹: minimum 100,000 Inner diameter tube: max. 4 mm

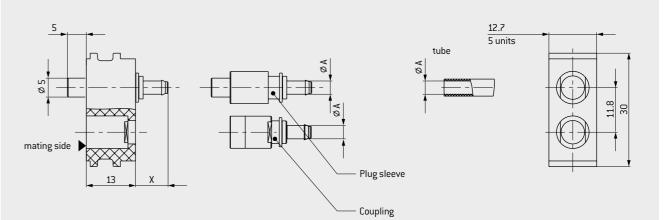
TECHNICAL DATA

- The contacts are pre-stressed in the mated state. The frame must maintain this pre-stress with a holding device.
- Vacuum model and further termination types on request.
- No 0, model².

TECHNICAL DATA

Mechanical data

Valid max. operating pressure Total mating force (average) non shut-off one side shut-off both side shut-off Total sliding force (average) non shut-off one side shut-off both side shut-off Operating temperature Mating cycles¹


Materials

Insulator

Valve body Sealing 20 bar 27 N / Module 28 N / Module 29 N / Module 12.6 N / Module 12.6 N / Module 9.2 N / Module -40 °C to +125 °C minimum 100,000

> Thermoplastic fibre glass reinforced acc. to UL-94 Cu alloy, blank NBR/FKM

INSULATOR PIN AND SOCKET

Module 2 contacts	Part number
Insulator	611.141.102.923.000

Description	Part number
Plug sleeve (non shut-off)	196.023.001.300.000
Plug sleeve (non shut-off)	196.024.001.300.000
Plug sleeve (non shut-off)	196.025.001.300.000
Coupling plug (non shut-off)	196.023.003.300.000
Coupling plug (non shut-off)	196.024.003.300.000
Coupling plug (non shut-off)	196.025.003.300.000
Plug sleeve (shut-off) ^{1,2}	196.025.014.300.000
Coupling plug (shut-off)	196.023.002.300.000
Coupling plug (shut-off)	196.024.002.300.000
Coupling plug (shut-off) ²	196.025.012.300.000

¹ Specified mating cycles through regular service intervals possible.² Not suitable for mixtures containing more than 25% oxygen content and explosive gases.

116

ACCESSORIES SEE PAGE <u>124</u>

Dim. A Dim. X Termination types see page <u>124</u> 3 8.5 х 4 10.5 М5 _ х 8.5 3 х 4 10.5 Μ5 х М5 _ х 8.5 3 10.5 4 Μ5

MODULE 2 CONTACTS FOR PNEUMATIC VALVES INNER DIAMETER OF TUBE MAX. 6 MM

Operating pressure: 12 bar

Inner diameter tube: 6 mm

TECHNICAL DATA

No 0, model².

TECHNICAL DATA

Mechanical data

non shut-off

non shut-off

Mating cycles¹

Materials Insulator

Valve body

Sealing

one side shut-off

one side shut-off

Operating temperature

Valid max. operating pressure

Total mating force (average)

Total sliding force (average)

Mating cycles¹: minimum 100,000

maintain this pre-stress with a holding device.

• Vacuum model and further termination types on request.

• The contacts are pre-stressed in the mated state. The frame must

12 bar

10.8 N / Module

12.8 N / Module

6.8 N / Module

6.8 N / Module

-40 °C to +125 °C

minimum 100,000

Thermoplastic fibre glass reinforced

acc. to UL-94 Cu alloy, blank

NBR

PNEUMATIC MODEL

Non shut-off version

One side shut-off version


FLOW RATE DIAGRAM

The flow diagram refers to the blocking variant with a maximum gap between socket and pin piece of ≤ 0.5 mm. The pressure reduction increases in the event of a changed gap measurement.

¹ Specified mating cycles through regular service intervals possible. ² Not suitable for mixtures containing more than 25 % oxygen content and explosive gases.

INSULATOR PIN AND SOCKET

Module 2 contacts	Part number
Insulator socket	610.140.102.923.000
Insulator pin	611.140.102.923.000

Description	Part number	Dim. A	Dim. X
Plug sleeve (non shut-off)	196.001.001.300.000	4	15
Plug sleeve (non shut-off)	196.002.001.300.000	6	17.5
Coupling plug (non shut-off)	196.001.003.300.000	4	15
Coupling plug (non shut-off)	196.002.003.300.000	6	17.5
Coupling plug (shut-off)	196.001.002.300.000	4	15
Coupling plug (shut-off)	196.002.002.300.000	6	17.5

MODULES

MODULE 1 CONTACT FOR PNEUMATIC VALVES INNER DIAMETER TUBE MAX. 6 MM

Operating pressure: 12 bar

TECHNICAL DATA

No O₂ model².

TECHNICAL DATA Mechanical data

non shut-off

non shut-off

Mating cycles¹

Materials

Insulator

Valve body

Sealing

one side shut-off

one side shut-off

Operating temperature

Valid max. operating pressure

Total mating force (average)

Total sliding force (average)

Mating cycles¹: minimum 100,000

• The contacts are pre-stressed in the mated state. The frame must

12 bar

5.4 N / Module

6.4 N / Module

3.4 N / Module 3.4 N / Module

-40 °C to +125 °C

minimum 100,000

Thermoplastic fibre glass reinforced

acc. to UL-94

Cu alloy, blank

NBR

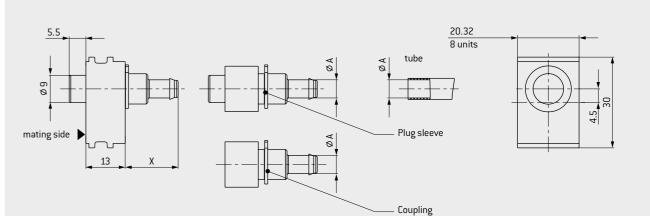
Inner diameter tube: max. 6 mm

maintain this pre-stress with a holding device.Vacuum model and further termination types on request.

PNEUMATIC MODEL

Non shut-off version

Shut-off version


FLOW RATE DIAGRAM

The flow diagram refers to the blocking variant with a maximum gap between socket and pin piece of ≤ 0.5 mm. The pressure reduction increases in the event of a changed gap measurement.

¹ Specified mating cycles through regular service intervals possible. ² Not suitable for mixtures containing more than 25% oxygen content and explosive gases.

INSULATOR PIN AND SOCKET

Module 1 contact	Part number
Insulator	611.142.101.923.000

Description	Part number	Dim. A
		mm
Plug sleeve (non shut-off)	196.001.001.300.000	4
Plug sleeve (non shut-off)	196.002.001.300.000	6
Coupling plug (non shut-off)	196.001.003.300.000	4
Coupling plug (non shut-off)	196.002.003.300.000	6
Coupling plug (shut-off)	196.001.002.300.000	4
Coupling plug (shut-off)	196.002.002.300.000	6

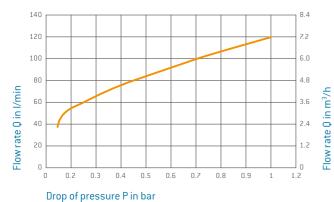
MODULES

A Dim. X mm 15 17.5 15 15 15 15 17.5

15

17.5

MODULE 2 CONTACTS


Suitable for conducting air, water and other fluids.

FLUID MODEL

FLOW RATE DIAGRAM AIR

FLOW RATE DIAGRAM WATER

The flow diagram refers to the blocking variant with a maximum gap between socket and pin piece of ≤ 0.5 mm. The pressure reduction increases in the event of a changed gap measurement.

¹ Specified mating cycles through regular service intervals possible.² Not suitable for mixtures containing more than 25% oxygen content and explosive gases.

122

Operating pressure: 10 bar low-leakage model Mating cycles¹: minimum 100,000

TECHNICAL DATA

- The contacts are pre-stressed in the mated state. The frame must maintain this pre-stress with a holding device.
- The use of flammable or explosive liquids or gases is not allowed.
- No 0₂ model².

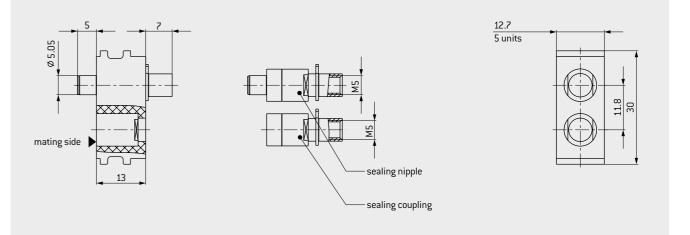
TECHNICAL DATA

Mechanical data

Valid max. operating pressure Tube termination commercial screwings Total mating force (average) Total sliding force (average) Operating temperature Mating cycles¹

Materials Insulator

Fluid model


Sealing

|

10 bar M5 internal thread 48 N / Module 4.6 N / Module

4.6 N / Module -40 °C to +125 °C minimum 100.000

Thermoplastic fibre glass reinforced acc. to UL-94 Stainless steel (1.4305) NBR INSULATOR PIN AND SOCKET

Module 2 contacts	Part number
Insulator	611.141.102.923.000

Description	Part number	Termination
		mm
Plug sleeve (pin piece)	196.025.015.902.001	M5
Coupling plug (socket piece)	196.025.016.902.001	M5

ACCESSORIES SEE PAGE <u>124</u>

ACCESSORIES FOR FLUID MODEL

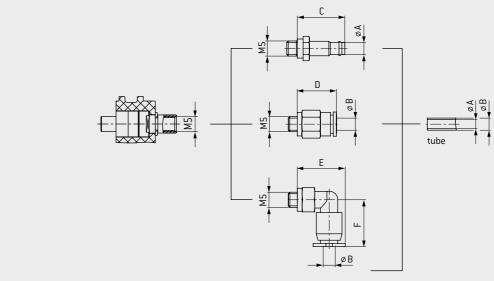
PNEUMATIC AND FLUID MODEL **TERMINATION TYPE I** Nipple fitting

TERMINATION TYPE II PUSH-IN Push-in fitting

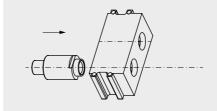
L connection

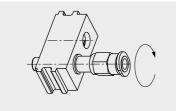
TECHNICAL DATA

• Tightening torque 1.5 Nm

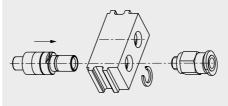

TECHNICAL DATA

Mechanical data Valid operating pressure (static) Operating temperature Thread termination


0.95 to 14 bar -10 °C to +80 °C Μ5

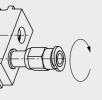

Description	Part number	Dim. A	Dim. B	Dim. C	Dim. D	Dim. E	Dim. F
		mm	mm	mm	mm	mm	mm
				inc	I. sealing was	sher	
Nipple fitting	945.000.001.000.123	2		10.2			
Nipple fitting	945.000.001.000.136	3		14.2			
Nipple fitting	945.000.001.000.137	4		15.8			
Push-in fitting push-in	945.000.001.000.138		3		13		
Push-in fitting push-in	945.000.001.000.139		4		13.2		
Push-in fitting push-in	945.000.001.000.140		6		14.2		
L connection push-in	945.000.001.000.141		3			14	11
L connection push-in	945.000.001.000.142		4			14.9	15.6
L connection push-in	945.000.001.000.143		6			17.2	16.2

TERMINATION DIMENSIONS ACCESSORIES FLUID MODEL WITH RETAINING RING


ASSEMBLY OF THE MODEL (DEPENDING ON MODEL)

1. Insert model in insulator.

2. Screw termination accessories in model. Tightening torque 1.5 Nm.



1. Insert model in insulator and assemble retaining ring.

2. Screw termination accessories in model. Tightening torque 1.5 Nm.

MODULES

MODULE 5 CONTACTS FOR PLASTIC FIBRE POF

FIBRE-OPTIC

REMOVAL TOOL II

Removal from front, cutting-off not necessary.

PART NUMBER: 087.611.001.002.000

For an overview of all tools please see from page <u>152</u>.

Ferrule

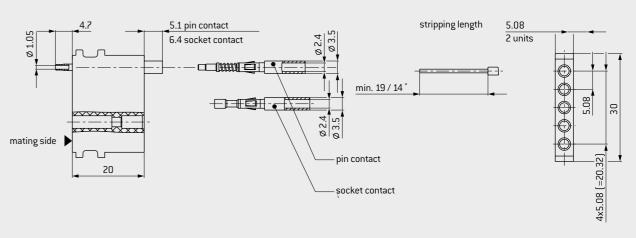
Mating cycles: minimum 40,000 Non-magnetic on request

TECHNICAL DATA

• Conditional with the function, the contacts are pre-stressed in the mated state. This pre-stressing must be maintained by the frame via a holding device.

TECHNICAL DATA

Mechanical data


POF (Polymer Optical Fibre)	1 mm
Outer diameter	2.2 mm respectively 2.3 mm
Fibre fastening	Crimp
Insertion loss	
Typical	1.5 dB at 670 nm
During life-time	< 2 dB at 670 nm
Total mating force (average)	< 17.5 N
Operating temperature (depending or	n fibre)
Standard fibre	-40 °C to +85 °C
High temperature fibre	-40 °C to +115 °C
Matingcycles	minimum 40,000

Materials Insulator

```
Fibre-optic contact
Type of fibre
```

Thermoplastic fibre glass reinforced acc. to UL-94 Cu alloy Plastic fibre 980/1.000 (POF)

INSULATOR PIN AND SOCKET

* min. 19 pin contact / min. 14 socket contact

Module 5 contacts	Part number
Insulator	611.163.105.923.000
Description	Part number
Socket contact 980/1,000 µm	196.503.001.901.000
Pin contact 980/1,000 µm	196.503.002.901.000
Processing set (multi-purpose and crimping tool)	080.000.048.000.000
Cutting/stripping universal pliers	080.000.048.100.000
Crimping tool	080.000.048.200.000

MODULE 2 CONTACTS FOR PLASTIC FIBRE POF/MOST

FIBRE-OPTIC

Ferrule

Mating cycles: minimum 100,000 Type of plastic fibre: POF/MOST

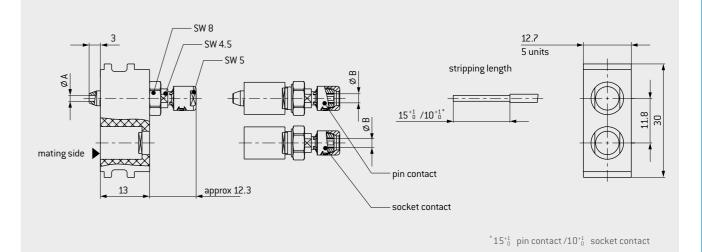
TECHNICAL DATA

- The contacts are pre-stressed in the mated state. The frame must maintain this pre-stress with a holding device.
- Lens connector on request.

TECHNICAL DATA

Mechanical data

POF (Polymer Optical Fibre) 1 mm 2.2 mm respectively 2.3 mm Outer diameter Fibre fastening Clamping Insertion loss 1.5 dB at 670 nm Typical < 2 dB at 670 nm During life-time Total mating force (average) 16.0 N Operating temperature (depending on fibre) Standard fibre -40 °C to +85 °C -40 °C to +115 °C High temperature fibre minimum 100,000 Mating cycles


Materials

Insulator

Fibre-optic contact Type of fibre

Thermoplastic fibre glass reinforced acc. to UL-94 Cu alloy Plastic fibre 980/1.000 (POF) or 980/1.550 (MOST)

INSULATOR PIN AND SOCKET

	Module 2 contacts	Part numbe
Insulator		611.141.102.92

Description	Part number	Dim. A	Dim. B
		mm	mm
Socket contact 980/1,000 µm	196.501.001.901.000	1.05	2.25
Pin contact 980/1,000 μm	196.501.002.901.000	1.05	2.25
Socket contact 980/1,550 µm (MOST standard)	196.502.001.901.000	1.6	2.35
Pin contact 980/1,550 µm (MOST standard)	196.502.002.901.000	1.6	2.35
Cable-stripping tool	598.501.001.000.000		
Spanner wrench 4.5 mm	598.501.002.000.000		
Spanner wrench 5 mm	598.700.001.016.000		
Nutdriver 8 mm	598.501.003.000.000		
Polish-device for socket	598.501.004.000.000		
Spare blades	598.501.006.000.000		
Polish-device for pin	598.501.007.000.000		
Lapp foils, 12 µm, 5 µm	598.501.010.000.000		

MODULES

923.000

MODULE 3 CONTACTS FOR FIBRE GLASS GOF

FIBRE-OPTIC

Removal of the already assembled contact (incl. cable). PART NUMBER: 087.170.136.000.000

Removal of the unassembled contact (with cable – wire may have removed) PART NUMBER: 087.611.001.001.000

For an overview of all tools please see page <u>152</u>.

Ferrule

Single-mode / multi-mode Mating cycles¹: minimum 100,000

TECHNICAL DATA

- The contacts are pre-stressed in the mated state. The frame must maintain this pre-stress with a holding device.
- Lens connector on request.

TECHNICAL DATA

Mechanical data Fibre glass

Fibre fastening

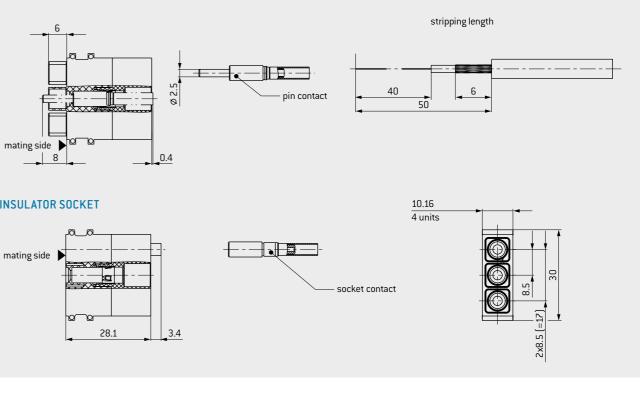
Insertion loss typical Total mating force (average) Assembly holding force Operating temperature Mating cycles¹

Materials Insulator

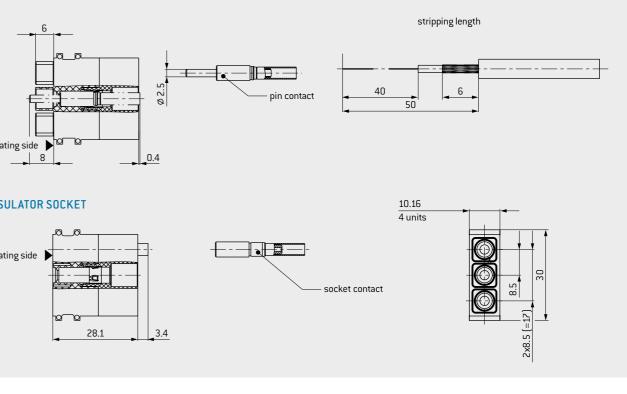
Ferrule holder Ferrule Spring

Multi-mode – 62.5/125 µm Fibre-optic glued² Surface polished² Sheath crimped < 1 dB $\leq 36 \text{ N}$ 10 N to 12 N / contact -40 °C to +85 °C minimum 100,000

Single-mode – 9/125 µm


Multi-mode – 50/125 µm

Thermoplastic fibre glass reinforced acc. to UL-94 Nickel silver


Ceramic

CrNi steel

INSULATOR PIN

INSULATOR SOCKET

Module 3 contacts	Part number
Insulator pin piece	611.162.103.923.000
Insulator socket piece	610.162.103.923.000

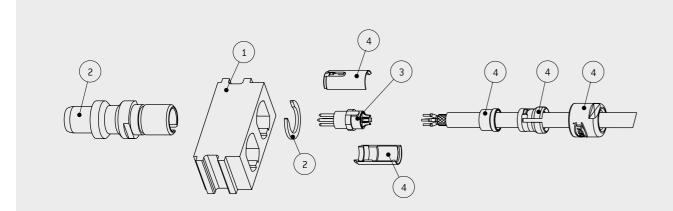
Description	Part number	Part number crimp insert	Fibre-optic fibre
Pin contact	196.603.002.901.000		50 / 125 µm; 62.5 / 125 µm
Pin contact	196.603.004.901.000		9/125µm
Socket contact	196.603.001.901.000	082.000.039.102.000	50 / 125 µm; 62.5 / 125 µm
Socket contact	196.603.003.901.000		9/125 µm
Crimping tool for shielding sleeve	080.000.039.000.000		

¹Specified mating cycles through regular service intervals possible. ² Fibre assembly (glue and polish) on request.

MODULES

Size 0 (e. g. insert in bus systems).

SHIELDED IMPLEMENTATION/HIGH-SPEED CONNECTOR

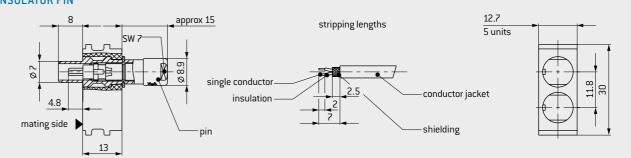


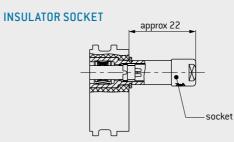
Mating cycles: minimum 5,000 USB 2.0, USB 3.0, CAT 5 2 to 10 contacts

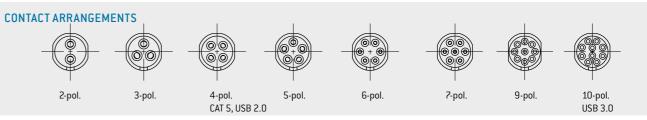
TECHNICAL DATA

- The inserts listed here for shielded implementations / high-speed connectors are optimally suitable for all common bus systems with transfer rates up to 10 MHz.
- For example, Profibus, USB 1.1, RS485, Flexray, CAN-Bus and RS232.Selected inserts are suitable and qualified for data rates up to
- 7.5 GBits/s (USB 3.0). For example, Fast-Ethernet, USB 2.0, USB 3.0, IEEE 1394.

HOW TO CONFIGURE YOUR HIGH-SPEED CONNECTOR




Order	Base parts	Part number
1	Insulator	611.148.102.923.000
2	Socket housing complete	653.001.001.304.000
2	Connector housing complete	653.001.002.304.000
	Dummy contact	021.341.182.300.000
3	Insert complete	see next page
4	Assembly set	see table on the right


ASSEMBLY SET

Cable Ø	Part number
mm	
1.5 to 2	653.001.001.304.020
2 to 2.5	653.001.001.304.025
2.5 to 3	653.001.001.304.030
3 to 3.5	653.001.001.304.035
3.5 to 4	653.001.001.304.040
4 to 4.5	653.001.001.304.045
4.5 to 5	653.001.001.304.050
5 to 6.1	653.001.001.304.061

INSULATOR PIN

Number of contacts	Contact diameter	Termination cross-section	Rated voltage ¹	Rated im- pulse voltage ¹	Degree of pollution ¹	Nominal voltage²	Model	Category ³	Insert complete⁴ Part number	Total mat- ing force	Total sliding force
	mm	AWG	v	kV		V AC				N	N
INSERT W	VITH ODU T	URNTAC [®] (M	IATING CYC	LES MINIMU	JM 5,000)						
2	0.9	22	10	2	3	500	Pin		700.849.724.002.200		
2	0.5	22	32	2	2	300	Socket		700.749.724.002.200	20	15
3	0.9	22	32	1.5	2	400	Pin		700.849.724.003.200	20	15
5	0.5	22	52	1.5	2	400	Socket		700.749.724.003.200		
4	0.7	26	32	1.5	2	300	Pin	CAT 5	700.848.724.004.200		
4	U.r	20	52	1.5	2	300	Socket	CAT 5	700.748.724.004.200		
4	0.7	22	32	1.5	2	300	Pin	USB 2.0	700.848.724.404.221		
4	U.r	22	52	1.5	2	300	Socket	USB 2.0	700.748.724.404.200		
5	0.7	26	32	1.5	2	366	Pin		700.848.724.005.200	22	17
5	U.r	20	32	1.5	2	200	Socket		700.748.724.005.200	22	Τr
6	0.5	28	32	1.5	2	300	Pin		700.841.724.006.200		
0	0.5	20	32	1.5	2	300	Socket		700.741.724.006.200		
7	0.5	28	32	1.5	2	300	Pin		700.841.724.007.200		
ſ	0.5	20	52	1.5	2	300	Socket		700.741.724.007.200		
9	0.5	28	10	1.2	2	200	Pin		700.841.724.009.200		
5	0.5	20	10	1.2	2	200	Socket		700.741.724.009.200	23.5	18
10	0.5	28	10	1.2	2	200	Pin		700.841.724.010.221	23.5	10
10	0.5	20	10	1.2	2	200	Socket		700.741.724.010.221		
40	6 × 0.3	28	10	4.2	2	4.00	Pin		700.831.724.410.D00	10	10
10	4 × 0.5	24	10	1.2	2	100	Socket	USB 3.0	700.731.724.410.D00	16	12

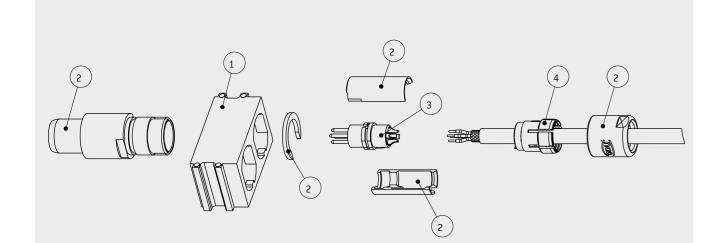
¹ Acc. to IEC 60664-1:2007 (VDE 0110-1:2008), see page 159. ² Acc. to EIA-364-20D:2008, SAE AS 13441:2004 method 3001.1. ³ Classification acc. to ISO/IEC 11801:2002. ⁴ Insert crimp model on request.

MODULES

In application with a housing please check the space requirement.

Size 1 (e. g. insert in bus systems).

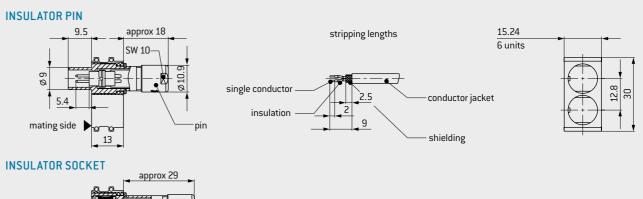
HOW TO CONFIGURE YOUR HIGH-SPEED CONNECTOR

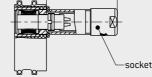

Mating cycles: minimum 5,000 / 60,000 CAT 5 2 to 14 contacts

TECHNICAL DATA

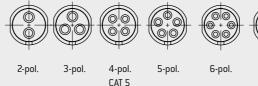
• The inserts listed here for shielded implementations / high-speed connectors are optimally suitable for all common bus systems with transfer rates up to 10 MHz.

For example, Profibus, RS485, Flexray, CAN-Bus and RS232.


• Selected inserts are suitable and qualified for data rates up to 1 GBit/s. For example, Gigabit-Ethernet, Fast-Ethernet, IEEE 1394, Firewire S400, Firewire S800.



Base parts	Part number
Insulator	611.167.102.923.000
Socket housing complete	653.002.001.304.000
Connector housing complete	653.002.002.304.000
Dummy contact	021.341.186.300.000
Insert complete	see next page
Assembly set	see table on the right
	Insulator Socket housing complete Connector housing complete Dummy contact Insert complete


ASSEMBLY SET

Part number
751.020.188.304.022
751.020.188.304.022
751.020.188.304.032
751.020.188.304.042
751.020.188.304.052
751.020.188.304.062
751.020.188.304.072
751.020.188.304.077

CONTACT ARRANGEMENTS

Number of con-	Contact diameter	Termination cross-section	Rated voltage ¹	Rated im- pulse voltage ¹	Degree of pollution ¹	Nominal voltage²	Model	Category ³	Insert complete ⁴ Part number	Total mat- ing force	Total sliding force
tacts	mm	AWG	v	kV		V AC				N	N
INSERT	WITH ODU	TURNTAC®	MATING CY	CLES MINI	MUM 5,000)					
2	1.3	20	32	2	3	550	Pin		701.844.724.002.200	8.5	7.5
2	1.5	20	80	2	2	550	Socket		701.744.724.002.200	0.5	7.5
3	1.3	20	16	2	3	500	Pin		701.844.724.003.200	8.5	7.5
5	1.5	20	40	-	2	500	Socket		701.744.724.003.200	0.5	1.5
4	0.9	22	10	2	3	500	Pin	CAT 5	701.849.724.004.200	10.5	9
-	0.5		32	-	2	500	Socket	CAIS	701.749.724.004.200	10.5	5
5	0.9	22	32	1.5	2	450	Pin		701.849.724.005.200	10.5	9
3	0.5		32	1.5	-	430	Socket		701.749.724.005.200	10.5	3
6	0.7	22	32	1.5	2	400	Pin		701.848.724.406.200	13	10
	0.1		JL	1.5	-	400	Socket		701.748.724.406.200	15	10
7	0.7	22	32	1.5	2	400	Pin		701.848.724.407.200	13	10
	•		02	2.0	-		Socket		701.748.724.407.200		
8	0.7	22	32	1.5	2	333	Pin		701.848.724.408.200	13	10
-	•			2.0	-		Socket		701.748.724.408.200		
8	0.5	26	32	1.5	2	333	Pin	CAT 5	701.841.724.408.D00	13	10.5
							Socket		701.741.724.408.D00		
10	0.5	28	25	1.5	2	333	Pin		701.841.724.010.400	15	12
							Socket		701.741.724.010.200		
14	0.5	28	25	1.5	2	300	Pin		701.841.724.014.400	15	12
INCERT		CODINCTIC	® (144711)C			000)	Socket		701.741.724.014.200		
INSERI	WITH UDU	SPRINGTAC		CYCLES MI		000)					
4	0.76	22	25	2	3	450	Pin	CAT 5	701.842.724.004.700	7.5	7
			63		2		Socket		701.742.724.004.700		
5	0.76	22	25	1.5	3	400	Pin		701.842.724.005.700	8.5	8
14	C C C C C A A D		63	450.34	2		Socket		701.742.724.005.700		

¹Acc. to IEC 60664-1:2007 (VDE 0110-1:2008), see page <u>159</u>. ²Acc. to EIA-364-20D:2008, SAE AS 13441:2004 method 3001.1. ³Classification acc. to ISO/IEC 11801:2002. ⁴Insert crimp model on request.

MODULES

In application with a housing please check the space requirement.

10-pol.

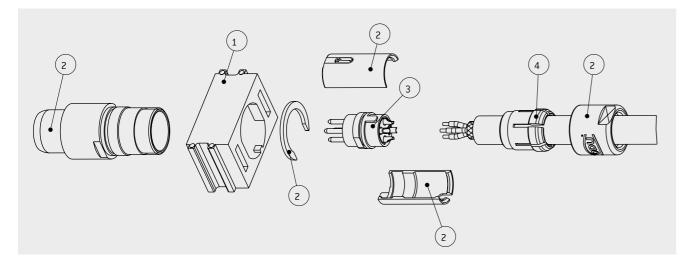
7-pol.

8-pol.

8-pol.

CAT 5

14-pol.



Size 2 (e. g. insert in bus systems).

SHIELDED IMPLEMENTATION/HIGH-SPEED CONNECTOR

HOW TO CONFIGURE YOUR HIGH-SPEED CONNECTOR

Order	Base parts	Part number
1	Insulator	611.170.101.923.000
2	Socket housing complete	653.003.001.304.000
2	Connector housing complete	653.003.002.304.000
3	Insert complete	see next page
4	Assembly set	see table on the right

ASSEMBLY SET

Mating cycles: minimum 5,000 / 60,000

• The inserts listed here for shielded implementations / high-speed

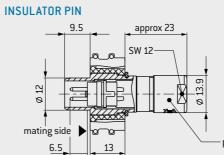
For example, Profibus, RS485, Flexray, CAN-Bus and RS232.

IEEE 1394, Firewire S400, Firewire S800, HDMI.

• Selected inserts are suitable and qualified for data rates up to

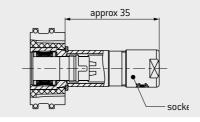
connectors are optimally suitable for all common bus systems with

10 GBit/s. E. g. 10 Gigabit-Ethernet, Gigabit-Ethernet, Fast-Ethernet,

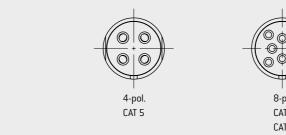

CAT 5, CAT 6_A, HDMI

TECHNICAL DATA

4, 8 and 16 contacts


transfer rates up to 10 MHz.

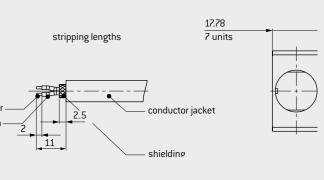
Cable Ø	Part number
mm	
2 to 3.2	752.020.188.304.032
3 to 4.2	752.020.188.304.042
4 to 5.2	752.020.188.304.052
5 to 6.2	752.020.188.304.062
6 to 7.2	752.020.188.304.072
7 to 8.2	752.020.188.304.082
8 to 9.2	752.020.188.304.092
9 to 9.9	752.020.188.304.099



single conductor insulation

INSULATOR SOCKET

CONTACT ARRANGEMENTS


tacts											
Number of con-	Contact diameter	Termination cross-section	Rated voltage ¹	Rated im- pulse voltage ¹	Degree of pollution ¹	Nominal voltage²	Model	Category ³	Insert complete ⁴ Part number	Total mat- ing force	Total sliding fo
	4-pol. CAT 5			8-pol. CAT 5 CAT 6 ₄				16-pol. HDMI			
	4-pol.						_				

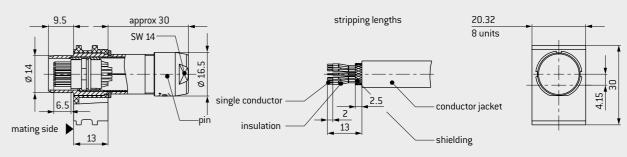
			40		2		Pin		702 044 724 004 200		
4	1.3	20	40	2.5	3	650	PIN	CAT 5	702.844.724.004.200	8.5	8
	1.0	20	160	2.0	2	000	Socket	6/11 0	702.744.724.004.200	0.0	Ū
8	0.9	22	20	2	3	F00	Pin	CATC	702.849.724.008.D00	147	12.0
ð	0.9	22	2 500 50 2	500	Socket	CAT 6 _A	702.749.724.008.D00	14.7	12.6		
16	0.5	26	10	1 5	3	250	Pin	нрмі	702.841.724.416.D00	30	23
10	0.5	20	1.5 32	1.5	2	250	Socket	пимі	702.741.724.416.D00	30	23
INSERT	WITH ODU	SPRINGTAC	(MATING	CYCLES MII	NIMUM 60,	000)					
0	0.70	22	16		3	550	Pin	CATE	702.842.724.008.D00	11.5	
8	0.76		40	2	2	550	Socket	CAT 5	702.742.724.008.D00		10.5

¹Acc. to IEC 60664-1:2007 (VDE 0110-1:2008), see page <u>159</u>. ²Acc. to EIA-364-20D:2008, SAE AS 13441:2004 method 3001.1. ³Classification acc. to ISO/IEC 11801:2002. ⁴Insert crimp model on request.

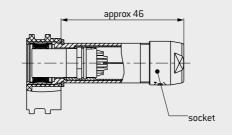
MODULES

In application with a housing please check the space requirement.

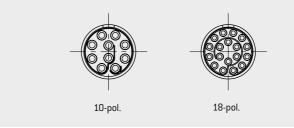
Size 3 (e. g. for use in bus systems).


HOW TO CONFIGURE YOUR HIGH-SPEED CONNECTOR

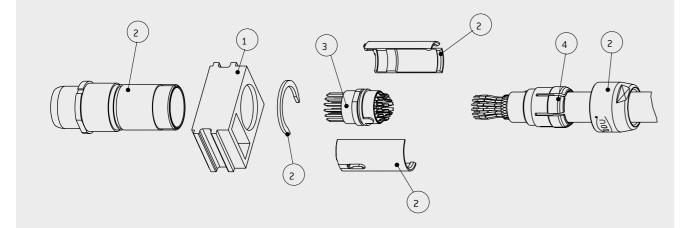
Mating cycles: minimum 5,000 10 to 30 contacts


TECHNICAL DATA

- The inserts listed here for shielded implementations / high-speed connectors are optimally suitable for all common bus systems with transfer rates to 10 MHz.
- For example, Profibus, RS485, Flexray, CAN-Bus and RS232.
- Selected inserts are suitable and qualified for data rates to 10 GBit/s. For example, 10 Gigabit-Ethernet, Gigabit-Ethernet, Fast-Ethernet, IEEE 1394, Firewire S400, Firewire S800.



INSULATOR SOCKET

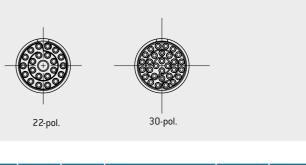


CONTACT ARRANGEMENTS

Number of contacts	Contact diameter	Termination cross-section	Rated voltage1	Rated im- pulse voltage ¹	Degree of pollution ¹	Nominal voltage²	Model	Category ³	Insert complete ⁴ Part number	Total mating force	Total sliding force	
	mm	AWG	v	kV		V AC				N	N	
INSERT WITH ODU TURNTAC® (MATING CYCLES MINIMUM 5,000)												
10	1.3	20	20	2	3	450	Pin		703.844.724.010.200	21.6	19.1	
10	1.5	20	50	2	2	450	Socket		703.744.724.010.200	21.0	19.1	
18	0.9	22	10	2	3	450	Pin		703.849.724.018.200	23.3	20.8	
18	0.9	22	32	2	2	450	Socket		703.749.724.018.200	23.3	20.8	
22	0.7	20	22	4 5	2	200	Pin		703.848.724.022.200	24 7	10.7	
22	0.7	26	32	1.5	2	2	366	Socket		703.748.724.022.200	21.7	19.7
20	0.7	20	22	4.5	2	200	Pin		703.848.724.030.200	20.4	24.5	
30	0.7	26	32	1.5	2	300	Socket		703.748.724.030.200	28.1	24.5	

¹Acc. to IEC 60664-1:2007 (VDE 0110-1:2008), see page <u>159</u>.²Acc. to EIA-364-20D:2008, SAE AS 13441:2004 method 3001.1. ³Classification acc. to ISO/IEC 11801:2002. ⁴Insert crimp model on request.

Order	Base parts	Part number
1	Insulator	611.171.101.923.000
2	Socket housing complete	653.004.001.304.000
2	Connector housing complete	653.004.002.304.000
3	Insert complete	see next page
4	Assembly set	see table on the right


ASSEMBLY SET

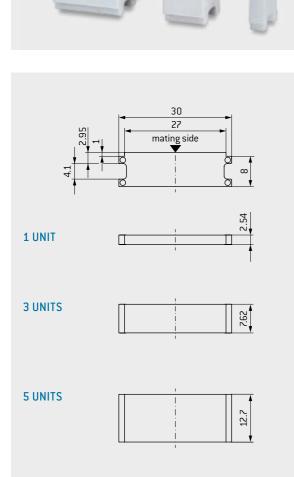
Cable Ø	Part number			
mm				
3 to 4.2	753.020.188.304.042			
4 to 5.2	753.020.188.304.052			
5 to 6.2	753.020.188.304.062			
6 to 7.2	753.020.188.304.072			
7 to 8.2	753.020.188.304.082			
8 to 9.2	753.020.188.304.092			
9 to 10.2	753.020.188.304.102			

MODULES

In application with a housing please check the space requirement.

BLANK MODULES

BLANK MODULES



SPACER MODULES

SPACER MODULES

Cannot be retroactively equipped with contacts. Information on the availability of the individual intermediate pieces can be found with the respective modules.

Units	Part number
1	611.122.113.923.000
3	611.130.113.923.000
5	611.128.113.923.000

For filling up not completely mounted frame.

blank modules.

TECHNICAL DATA

Insulator

The frame has to be fully mounted with insulators, spacers or

Thermoplastic

acc. to UL-94

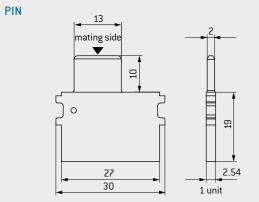
fibre glass reinforced

Supplied without contact arrangements and enable blind mating despite differing contact arrangements.

This is the case, for example, with test lanes with various testing scenarios. This means that various tasks can be carried out with one contact arrangement.

TECHNICAL DATA

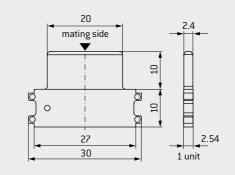
Insulator


Thermoplastic fibre glass reinforced acc. to UL-94 CODING MODULES

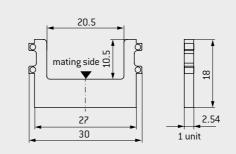
CODING MODULES

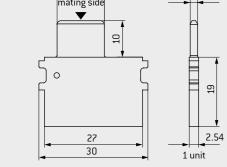
PIN PROTECTION MODULES

Coding modules are placed between the modules to enable coding in addition to the guide system.

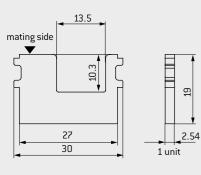

TECHNICAL DATA

Insulator


Thermoplastic fibre glass reinforced acc. to UL-94


Description	Units	Part number
Coding module (pin)	1	611.161.101.923.000
Coding module (socket)	1	610.161.101.923.000

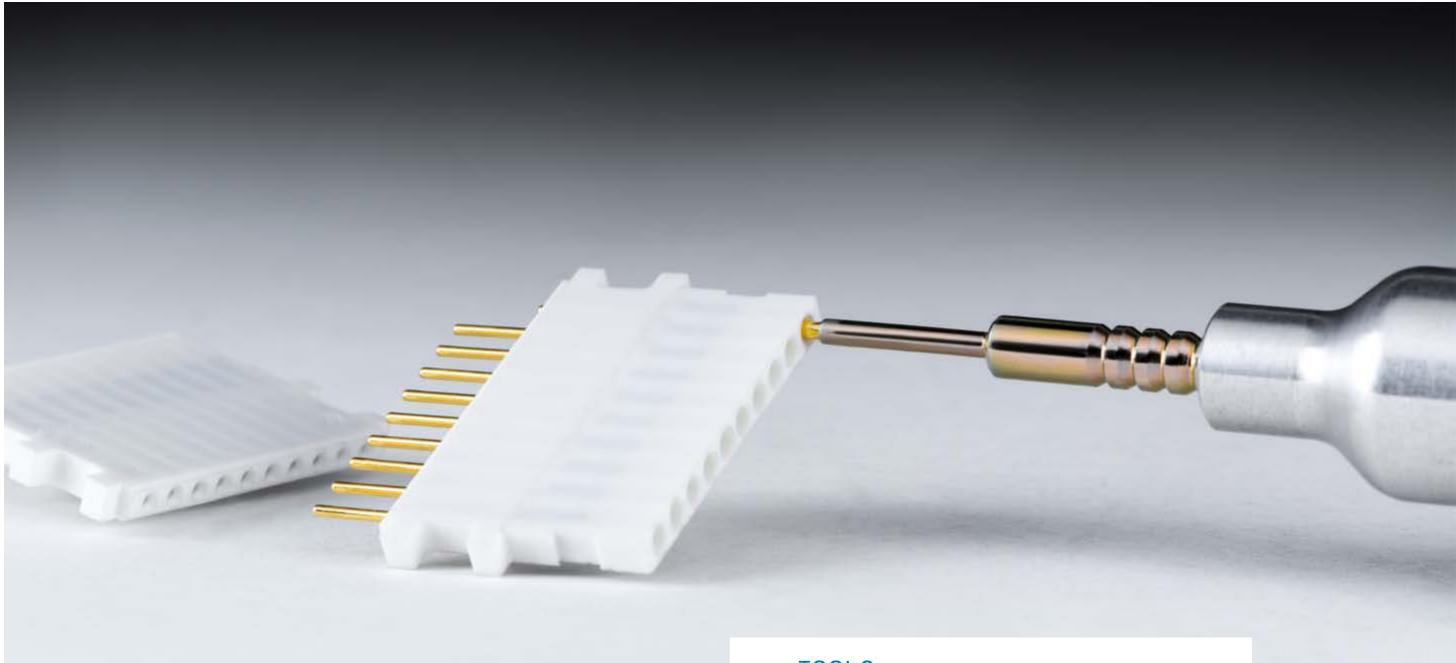
PIN



SOCKET

SOCKET

For connections with small pin diameters, these modules serve as protection for the pins. Especially in the case of small contact diameters (\emptyset 0.76 / 1.02 mm), pin protection modules provide additional protection against unintentional bending of the pins.


TECHNICAL DATA

Insulator

Thermoplastic fibre glass reinforced acc. to UL-94

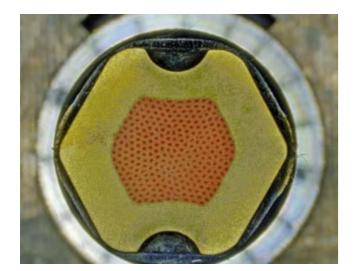
Description	Units	Part number
Pin protection module (pin)	1	611.122.115.923.000
Pin protection module (socket)	1	610.122.115.923.000

Alternatively, these modules can be used to extend clearance and creepage distances.

TOOLS

Contact processing and crimping
Crimping tools
Tensile strength diagram for crimp terminations
Crimp information
Assembling aid
Removal contacts
Maintenance kit

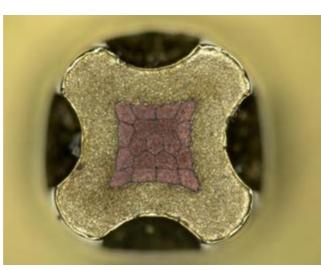
Table of Contents


ODU-MAC®

 146
. 147
 . <u>149</u>
 . <u>150</u>
 . 152
. <u>154</u>
 . <u>155</u>

TOOLS

CONTACT PROCESSING AND CRIMPING



Cross-section hexagonal crimping

Contact crimping creates a secure, durable and corrosion-free connection. It can also be carried out by a non-specialist and saves time.

Cold compaction (crimping) compresses the conductor and contact material at the press points so as to form a gas-tight connection with tensile strength appropriate for the conductor material. The crimp connection eliminates many of the drawbacks from soldering. Crimping can be carried out on the smallest and large cross-sections.

Cross-section 8-point crimping

For smaller cross-sections (0.08 mm² to 2.5 mm²), the 8-point crimping tools are used; the hexagonal pressing plants are chosen for larger cross-sections. When pressing larger cross-sections, step by step deformation adapted to the flowability of the material is necessary; this prevents brittle tearing.

EXAMPLE: ADJUSTING THE HYDRAULIC HEXAGONAL CRIMPING TOOLS ACCORDING TO THE CABLE CROSS-SECTION

Select the right profil (see page 150). The appropriate pair of crimping jaws must be used prior to commissioning the hand press. The crimping jaw holder can be opened by applying pressure.

The insert halves are then inserted into the clamping jaw holder and pressed into the fixing bolts. The holder is then closed.

Hydraulic pressure is built up by the pumps.

4TH STEP:

The final pressure is reached with an audible "click". The pressing procedure is completed and can be brought to its starting position with the reset lever. The crimp termination is released.

CRIMPING TOOLS

For further crimp information please refer to the table on page 150.

8-POINT CRIMPING TOOL FOR CONDUCTOR CONNECTIONS FROM 1.5 TO 6 MM²

HEXAGONAL CRIMPING TOOL FOR CROSS-SECTIONS (AWG 12), 2.5 TO 6.0 MM²

MECHANICAL HEXAGONAL HAND CRIMPING TOOL FROM 10 TO 50 MM²

For assembly instructions please refer to our website: www.odu-connectors.com/downloads.

With user-friendly digital display. PART NUMBER: 080.000.051.000.000

POSITIONER FOR CONTACT DIAMETER FROM 0.76 TO 3 MM PART NUMBER: 080.000.051.101.000

Has to be ordered separately.

With user-friendly digital display. PART NUMBER: 080.000.057.000.000

POSITIONER FOR CONTACT DIAMETER FROM 1.5 TO 3 MM PART NUMBER: 080.000.057.101.000

Has to be ordered separately.

With blocking system. PART NUMBER: 080.000.062.000.000

PART NUMBER: 080.000.064.000.000

High pressing force with low manual force through precision mechanics. Folding head facilitates processing of unwieldy connector forms and changing of crimp inserts.

CRIMPING JAWS FOR CONTACT DIAMETER FROM 5 TO 12 MM SEE PAGE 151

Has to be ordered separately.

CRIMPING TOOLS

For further crimp information please refer to the table on page 150.

HEXAGONAL CRIMPING TOOL FOR COAX CONTACTS

With blocking system. PART NUMBER PLIER: 080.000.039.000.000

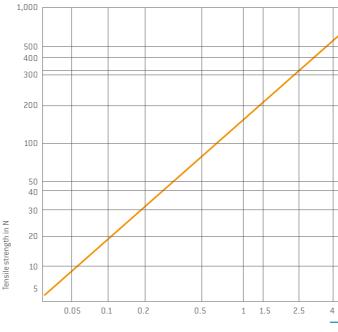
CRIMPING JAWS PLEASE SEE PAGE 150 Has to be ordered separately.

HAND CRIMPING TOOL FOR SINGLE CRIMP CONTACTS (STAMPED CONTACTS)

PART NUMBER: 080.000.040.000.000 Single contacts are positioned manual in the plier and get crimped.

HAND CRIMPERS WITH ROLL FOR SPOOL GOODS (STAMPED CONTACTS)

PART NUMBER: 080.000.041.000.000


Contacts are supplied on the reel and get automatically isolated. The feed occurs by hand operation.

- Suitable for coil size: 115 mm. Therefore 500/900 contacts can be processed.
- Processing with automatic stripper crimper possible, further information on request.

CRIMP CONNECTIONS

IEC 60352-2:2013 (DIN EN 60352-2:2014)

Tensile strength diagram of a crimp termination depending upon the conductor cross-section IEC 60352-2:2013 (DIN EN 60352-2:2014). Example: A 2.5 mm² conductor must achieve a minimum tensile strength of approx. 320 N.

Conductor cross-section in mm²

NOTE

Internal standards and guidelines are used for cross-sections (> 10 mm²), as these are not clearly defined in the international standard.

TESTING ELECTRICAL CONTINUITY FOLLOWING ASSEMBLY / TESTING OF WIRING:

One of the most important functional features is the observance of the specified mating and sliding forces. All socket contacts in fully automatic systems supplied by ODU are therefore tested for 100 % observance of these values in the context of process monitoring. This takes place with the correctly chosen testing systems without damage to the socket. However, ODU points out that incorrectly chosen test systems (e.g. test pin) or process-

TOOLS

- ing methods (e.g. test speed) following packaging can damage the sockets/pins. Please note the instructions in the assembly instructions
- (www.odu-connectors.com/downloads/assembly-instructions).
- We recommend using suitable test adapters here.

CRIMP INFORMATION

CRIMP INFORMATION

section

mm²

0.08/

0.25

0.38

0.38/ 0.5

1

1.5

2.5

4

6

10

16

16

25

35

50

Hexagonal crimping tool 080.000.064.000.000

Crimping jaws

Stripping length

4^{+0.5}

3^{+0.5}

4^{+0.5}

4^{+0.5}

5^{+0.5}

4^{+0.5}

5^{+0.5}

4^{+0.5} 4+0.5

5^{+0.5}

5^{+0.5}

5^{+0.5}

5^{+0.5}

6^{+0.5}

6+0.5

9^{+0.5}

9^{+0.5}

16^{+0.5}

080.000.064.110.000

080.000.064.101.000

080.000.064.125.000

9+0.5 080.000.064.116.000

16^{+0.5} 080.000.064.135.000

16^{+0.5} 080.000.064.150.000

Contact diameter			Stripping length	8-pt crimping tool 080.000.051.000.000 without positioner	8-pt crimping tool 080.000.057.000.000 without positioner	Crimping tool for coax 080.000.039.000.000	Hexagonal crimping tool 080.000.062.000.000
_				Positioner	Positioner		
mm	AWG	mm²	mm	080.000.051.101.000 position / adjustment dim.	080.000.057.101.000 position / adjustment dim.	Crimping jaws	
0.76		0.25/		1/0.67			
1.02	24/28	0.23/	4+0.5	2/0.67			
1.5				3/0.67			
0.7	26/28		3 ^{+0.5}				
0.7 0.76	22/24			1/0.62			
1.5	22	0.38	4 ^{+0.5}	3/0.62			
1.02				2/0.92			
1.5		0.5/	4 ^{+0.5}	3/0.92			
2.41	20/22	0.38	5 ^{+0.5}	4/0.92			
3			5	5/0.92			
1.5			4 ^{+0.5}	3/1.12			
2.41	18	1/0.75	5 ^{+0.5}	4/1.12			
3			3	5/1.12			
1.5	16		4 ^{+0.5}	3/1.42	10 / 1.42 ¹		
1.5			4+0.5	3/1.32	10 / 1.42 ¹		
2.41		1.5	5 ^{+0.5}	4/1.32	9 / 1.42 ¹		
3			5 ^{+0.5}	5/1.32	6 / 1.42 ¹		
1.5			4 ^{+0.5}	3/1.42	10 / 1.42 ¹		
2.41	14		5 ^{+0.5}	4/1.42	9 / 1.42 ¹		
3			5 ^{+0.5}	5/1.42	6 / 1.42 ¹		
2.41		25	5 ^{+0.5}		9/1.67		
3		2.5	510.5		6/1.67		Profile no. 2
2.41	12		5 ^{+0.5}		9/2.12		Profile no. 2
3		4	5 ^{+0.5}		6/2.52		Profile no. 3
5		4	6+0.5				FIUIIIe IIU. 5
3		6	6+0.5		6/2.52		Profile no. 3
5		10	9 ^{+0.5}				
8		16	9 ^{+0.5}				
8							
10		25	16+0.5				
12							
10		35	16 ^{+0.5}				
12							
12		50	16+0.5				
RG 178/RG 196 RG174/RG 188/RG 316/RG 179/RG 187		_			082.000.039.101.000		
		179/RG 187	/21]			082.000.039.102.000	
G 02232 D/K RG 122/2YCY			[9/4.5/18.5/21]			082.000.039.103.000 082.000.039.104.000	
RG 58/G 0323			4.5/			082.000.039.104.000	
RG 223 082.000.039.108.000							
RG 59						082.000.039.109.000	
	16 0.011						

¹Recommended from ODU as standard plier.

TOOLS

Hand crimping tool stamped contacts	Hand crimping tool stamped contacts
	Spool goods
080.000.040.000.000	080.000.041.000.000
080.000.040.000.000	080.000.041.000.000

TO OLS

ASSEMBLING AID

ASSEMBLING AID

TORQUE WRENCH

With cross handle, fixed, automatic release (for inner hexagonal bits with C6.3- or E6.3shaft). Bit has to be ordered separately.

Contact Ø	Assembly tool high current	Assembling aid insertion tool	Assem extrac
0.76		085.611.001.001.000	087.611.0
1.02		085.611.001.001.000	087.611.0
1.5		085.611.001.001.000	087.611.0
8	087.611.002.001.000		
10	087.611.003.001.000		
12	087.611.004.001.000		

REMOVAL AND ASSEMBLY ONLY POSSIBLE WITH ODU TOOLS.

Description For use in		Part number	Nm	Recommended tightening torque
Torque wrench		598.054.001.000.000	0.9	
Torque wrench		598.054.002.000.000	1.2	
Torque wrench		598.054.003.000.000	3	
Bit slot 3.5 (0.5/50)	Screwing of the rails in the T frame	598.054.108.000.000		0.9 Nm +/- 0.2 Nm
Bit slot 5.5 (0.8/50)	Screwing of the rails in the M and L frame	598.054.101.000.000		1.2 Nm +/- 0.2 Nm
Bit slot 6.25 (1.0/50)	Coding socket for frames in a housing	598.054.107.000.000		1.2 Nm +/- 0.2 Nm
Special bit	Coding pin for frame in housing	598.054.203.000.000		1.2 Nm +/- 0.2 Nm
Bit combi slot size 1	Mounting screw on frames in a housing	598.054.102.000.000		1.2 Nm +/- 0.2 Nm
Bit Phillips cross slot size 1	Grounding screw on frames in a housing	598.054.106.000.000		1.2 Nm +/- 0.2 Nm
Bit torx T × 8	Rails on frames in a housing	598.054.103.000.000		0.9 Nm +/- 0.2 Nm
Bit torx T × 10	Screwing of the rails in the S/ L/ M frame	598.054.104.000.000		1.2 Nm +/- 0.2 Nm
Bit torx T × 20	Screwing of the rails in the P frame	598.054.105.000.000		3.0 Nm +/- 0.3 Nm

Necessary assembly tool for screwing and releasing of the contacts. Tightening torque: 3.5 Nm +/- 0.5 Nm

PART NUMBER: 087.611.00_.001.000

With _ please register the respective figure for contact diameter 8 to 12 mm. See table below.

INSERTION TOOL Ø 0.76-1.5 MM

For assembling aid of contacts with flexible/ thin conductors (pin and socket side).

PART NUMBER: 085.611.001.001.000

EXTRACTION TOOL Ø 0.76-1.5 MM

Extraction tool for sockets and pins by use of the removal tool.

PART NUMBER: 087.611.005.001.000

nbling aid ction tool

.005.001.000 .005.001.000 .005.001.000

REMOVAL OF CONTACTS

REMOVAL TOOL I

Removal of the already assembled contact (incl. cable): The removal tool is pressed from behind into the insulator until a quiet click is heard. The contact is removed from the insulator by pulling on the cable or by lightly pressing the contact with the extraction tools.

REMOVAL ONLY POSSIBLE WITH ODU TOOLS.

Contact Ø	Removal tool l	Removal tool l	Removal tool II	Removal tool	Removal tool
	straight	angled			
			e		
0.76²		087.170.361.000.000	087.611.001.001.000		
1.02 ²		087.170.362.000.000	087.611.001.001.000		
1.5²	087.170.138.000.000	087.170.363.000.0001	087.611.001.001.000		
2.41	087.170.139.000.000	087.170.365.000.000	087.611.001.001.000		
3	087.170.136.000.000	087.170.366.000.000	087.611.001.001.000		
5				087.170.391.000.000	
Coax 50Ω 4 contacts	087.170.139.000.000	087.170.365.000.000	087.611.001.001.000 ²		
Coax 50Ω 2 contacts				087.170.391.000.000	
Coax 50Ω 2 contacts SMA				087.122.349.000.000	
Coax 75Ω 2 contacts				087.170.391.000.000	
Fibre-optic 5 contacts					087.611.001.002.000
Fibre-optic 3 contacts	087.170.136.000.000		087.611.001.001.000		

REMOVAL TOOL II

extraction tools.

Removal of the not yet assembled contact (with cable - wire

may have removed): The removal tool is pressed from behind

into the insulator until a quiet click is heard. The contact can

be removed from the insulator by lightly pushing it with the

MAINTENANCE PACKAGE FOR ODU SPRINGTAC® AND ODU LAMTAC® CONTACTS

¹In use with high voltage module, 4 contacts, (see page <u>106</u>) the angled version cannot be used. ²With cable (H+S) 602232 only removal tool I is usable.

Contact lubrication improves the mechanical properties of contact systems. Cleaning the contact surfaces prior to lubrication is also recommended in order to remove pollution. With appropriate care, wear due to high mating frequency can be significantly minimised and the mating and unmating forces reduced. The cleaning and lubricating interval must be individually adapted to circumstances and should only be carried out with products recommended by the contact manufacturer.

ODU has put together a maintenance package to this purpose, so that lubrication can be carried out directly on location. A cleaning brush and a special cleaning cloth, as well as precise instructions allow optimal care of the contacts. In the absence of other specifications, the maintenance package can be used for all ODU contacts and connections.

PART NUMBER: 170.000.000.000.100

For technical properties of the maintenance package please refer our website: www.odu-connectors.com/downloads.

CLEANING INFORMATION

Maintenance instruction 003.170.000.000

FURTHER INFORMATION

Never submerge the connector in liquid. The connector may only be put back into operation again when it has been assured that it is completely dry.

Ensure that contact pins are not bent or otherwise damaged. The connector may no longer be used when damage or other signs of wear are detected. Clean with maximum 2.5 bar compressed air to avoid contact damage. A slight blackening of the contact points may occur over the course of the service life and represents no impairment of the electrical properties.

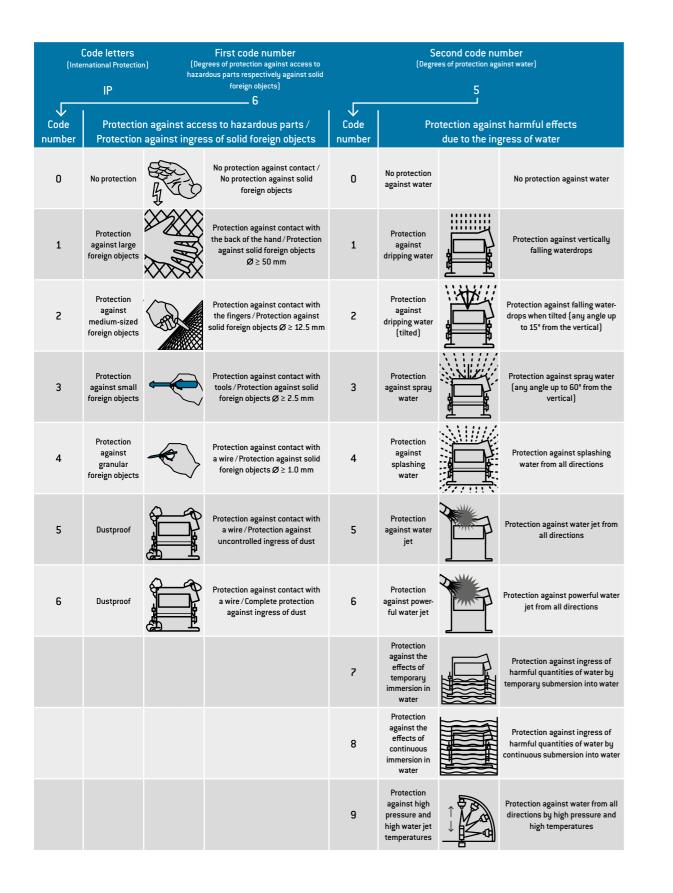
Recommended cleaning agent

Soap: liquid soaps on sodium bicarbonate or potassium base. Alcohol: ethanol 70 %, isopropyl alcohol 70 %.

Basisteile / basics Olsolierkörper / insu Okabelgehäuse cpl / Osteckergehäuse 8. 1N 24.5N ZN 19.7N 20. 8N 19. 1N 8-1-1

TECHNICAL INFORMATION

International protection classes acc. IEC 60529:2013 (VDE 0470-1:2
Explanations and information according to VDE
Conversions / AWG
Operating voltage according to EIA-364-20D:2008
Current-carrying capacity
Technical terms



014)	158
	159
	162
	163
	164
	169

TECHNICAL INFORMATION

INTERNATIONAL PROTECTION CLASSES

Acc. IEC 60529:2013 (VDE 0470-1:2014).

EXPLANATIONS AND INFORMATION ON INSULATION COORDINATION

IEC 60664-1:2007 (VDE 0110-1:2008): TABLE F.1 – RATED SURGE VOLTAGE FOR OPERATING MEDIA FED DIRECTLY FROM THE LOW VOLTAGE MAINS.

Nominal voltage of the po work) acc. to IEC 60038:	ower supply system (net- 2009 (VDE 0175-1:2012)	Voltage conductor to neutral conductor	Rated impulse voltage Overvoltage category			
Three-phase-system V	Single-phase-system V	derived from nominal voltages a.c. or d.c. up to and including V	l V	ll V	III V	IV V
		50	330	500	800	1,500
		100	500	800	1,500	2,500
	120 to 240	160	800	1,500	2,500	4,000
230/400277/480		300	1,500	2,500	4,000	5,000
400/692		600	2,500	4,000	6,000	8,000
1,000		1,000	4,000	6,000	8,000	12,000

APPLICABLE STANDARDS

IEC 60664-1:2007 (VDE 0110-1:2008) and IEC 61984:2008 (VDE 0627:2009), original (IEC 60664-1:2007 VDE 0110-1:2008) and IEC 61984:2008 (VDE 0627:2009) remains definitive for all of the technical information named).

GENERAL

The selection of a connector cannot only take functionality, number of contacts, current or voltage parameters into account. In fact, consideration of the place of use and the installation conditions prevailing there is indispensable. Depending upon the installation and ambient conditions, the connector can be used in accordance with the standards in a variety of voltage and current ranges. All of the voltage data listed in this catalogue refers to the use of insulators in the ODU-MAC solid frame for housings or in the ODU-MAC docking frame. All of the connectors shown here involve connectors without contact rating (COC) in accordance with IEC 61984:2008 (VDE 0627:2009).

The most important influence variables and the electrical parameters harmonised with these will be explained in more detail in the following. Our technicians would be happy to assist you with any further questions. The following texts and tables are excerpts from the indicated standards.

OVERVOLTAGE CATEGORY

The necessary rated surge voltage is defined through the overvoltage category according to table F.1 together with the nominal voltage used. Depending upon the installation location, the respective overvoltage category is selected according to the criteria listed below for operating media that fed directly from the low voltage mains.

Overvoltage category I

Operating media for connection to circuits in which measures for limiting the transient overvoltages to an appropriately low value have been taken. For example, connectors for the voltage supply of computer hardware permanently connected to a power supply with electronic overvoltage limitation.

Overvoltage category II

Operating media fed by the fixed installation that consume energy. For example, household devices, portable tools and similar devices.

Overvoltage category III

(= standard, when no special overvoltage category is indicated) Operating media in permanent installations and cases for which special requirements for reliability and availability of the operating media exist. For example, switches in permanent installations and operating media for industrial use with permanent connection to the permanent installation.

Overvoltage category IV

Operating media for use at the termination point of the installation. For example, electricity meters and primary overcurrent protection devices.

EXPLANATIONS AND INFORMATION ACCORDING TO VDE

DEGREE OF POLLUTION

Potentially occurring pollution combined with moisture can influence the insulation capacity on the surface of the connector. In order to define various rating parameters, a degree of pollution according to the criteria listed below must be selected for the operating medium.

In the case of a connector with a degree of protection of minimum IP 54 IEC 60529:2013 (VDE 0470-1:2014), the insulating parts may be measured enclosed according to the standard for a low degree of pollution. This also applies for mated connectors for which enclosure is ensured by the connector housing and which are only disconnected for testing and maintenance purposes.

Degree of pollution 1

No or only dry, non-conductive pollution is present. The pollution has no influence. For example, computer systems and measuring devices in clean, dry or air-conditioned rooms.

Degree of pollution 2

Only non-conductive pollution is present. However, temporary conductivity due to condensation must be anticipated. For example, devices in laboratories, residential, sales and other business areas.

Degree of pollution 3

(= standard, when no special degree of pollution is indicated) Conductive pollution occurs or dry, non-conductive pollution that becomes conductive because of dewfall must be expected. For example: Devices in industrial, commercial and agricultural operations, unheated storage areas and workshops.

Degree of pollution 4

Permanent conductivity is present, caused by conductive dust, rain or moisture. For example, devices in the open air or outdoor facilities and construction machinery.

Operating voltage (VDE : Rated voltage): Value of a voltage that is specified by the manufacturer for a component, device or operating medium and relates to the operating and performance features. Depending upon the indicated degree of pollution, the rated voltage is dependent upon the insulating material group of the connector and the respective creepage distances between the individual contacts. The rated voltage may be significantly influenced by the use of blank modules and varying positioning of the contacts in the insulator. Operating media may have more than one value or one range for rated voltage (see table F4 in IEC 60664-1:2007 (VDE 0110-1:2008)).

NOMINAL VOLTAGE

A suitably rounded voltage value indicated by the manufacturer for the designation or identification of an operating medium. In these explanations, the term nominal voltage is used for the value of the issued voltage indicated by the power supply company (PSC) or by the manufacturer of the voltage source for classification of the overvoltage category.

RATED IMPULSE VOLTAGE

Value of an impulse withstand voltage that is indicated by the manufacturer for an operating medium or a part of this, and which indicates the defined endurance of its insulation against transient (brief, duration of a few milliseconds) overvoltages. The impulse withstand voltage is the highest value of the surge voltage of a defined form and polarity which will not result in the dielectric breakdown of the insulation under defined conditions.

Depending upon the indicated degree of pollution, the rated surge voltage depends upon the clearance distance between the individual contacts. The rated surge voltage may be influenced significantly by the usage of blank modules and varied positioning of the contacts in the insulators, [see table F.2 in IEC 60664-1:2007 (VDE 0110-1:2008)].

In the most recent edition of IEC 60664-1:2007 (VDE 0110-1:2008), the minimum clearance distances for operating media not connected directly to the low voltage mains should be measured according to the possible permanent voltages, the temporary overvoltages or periodic peak voltages (see table F.7 in IEC 60664-1:2007 (VDE 0110-1:2008)).

IMPULSE TEST VOLTAGE / POWER FREQUENCY TEST VOLTAGE

Highest value of the surge voltage of a defined form and polarity that will not result in a dielectric breakdown or flashover of the insulation under defined conditions.

CLEARANCE DISTANCE

The shortest distance in the air between two conductive parts.

CREEPAGE DISTANCE

The shortest distance between two conductive parts over the surface of an insulation material. The creepage distance is influenced by the degree of pollution applied.

TEST VOLTAGE

The dielectric strength of the connector is confirmed according to the standard corresponding to the indicated rated surge voltage by applying the test voltage according to table F.5 over a defined time range.

IEC 60664-1:2007 (VDE 0110-1:2008): table F.5 – test voltages for testing clearance distances at different altitudes (the voltage levels are valid only to verify the clearance distances).

Rated impulse voltage	Test impulse voltage at sea level	Test impulse voltage at 200 m elevation	Test impulse voltage at 500 m elevation
û kV	û kV	û kV	û kV
0.33	0.357	0.355	0.350
0.5	0.541	0.537	0.531
0.8	0.934	0.920	0.899
1.5	1.751	1.725	1.685
2.5	2.920	2.874	2.808
4	4.923	4.874	4.675
6	7.385	7.236	7.013
8	9.847	9.648	9.950
12	14.770	14.471	14.025

TECHNICAL INFORMATION

FECHNICAL INFORMATION

CONVERSIONS/AWG (AMERICAN WIRE GAUGE)

Circular wire AWG Diameter Weight Max. Cross resistsection ance kg/km Ω/km mm 10(1) 0.1020 2.5900 5.2700 47.000 3.45 10 (37/26) 1.1090 2.7500 4.5300 43.600 4.13 12 (1) 0.0808 2.0500 3.3100 29.500 5.45 6.14 12 (19/25) 0.0895 2.2500 3.0800 28.600 12 (37/28) 0.0858 2.1800 2.9700 26.300 6.36 1.6300 2.0800 18.500 8.79 14 [1] 0.0641 1.7000 1.9400 18.000 9.94 14 [19/27] 0.0670 14 (37/30) 0.0673 1.7100 1.8700 17.400 10.50 16(1) 1.2900 1.3100 11.600 13.94 0.0508 1.4000 1.2300 11.000 15.70 16 (19/29) 0.0551 18 (1) 1.0200 0.8200 7.320 22.18 0.0403 18 (19/30) 0.0480 1.2200 0.9600 8.840 20.40 0.8130 0.5200 4.610 35.10 20 (1) 0.0320 0.9300 0.5600 5.150 34.10 20 [7/28] 0.0366 20 (19/32) 0.0384 0.9800 0.6200 5.450 32.00 0.6400 2.890 57.70 22 [1] 0.0252 0.3240 22 (7/30) 0.0288 0.7310 0.3540 3.240 54.80 22 (19/34) 0.0307 0.7800 0.3820 3.410 51.80 24 [1] 0.0197 0.5000 0.1960 1.830 91.20 0.5850 0.2270 2.080 24 (7/32) 0.0230 86.00 0.6400 0.2400 2.160 83.30 24 [19/36] 0.0252 26 (1) 0.1570 0.4000 0.1220 1.140 147.00 26 (7/34) 0.0189 0.4800 0.1400 1.290 140.00 26 (19/38) 0.0192 0.4870 0.1500 1.400 131.00 28 [1] 0.0126 0.3200 0.0800 0.716 231.00 28 [7/36] 0.0150 0.3810 0.0890 0.813 224.00 0.3850 0.0950 0.931 207.00 28 [19/40] 0.0151 30 (1) 0.2500 0.0506 0.451 374.00 0.0098 30 [7/38] 0.0115 0.2930 0.0550 0.519 354.00 30 (19/42) 0.3120 0.0720 0.622 310.00 0.0123 32 (1) 0.0080 0.2030 0.0320 0.289 561.00 32 (7/40) 0.0094 0.2400 0.0350 0.340 597.10 0.2540 0.0440 0.356 32 [19/44] 0.0100 492.00 0.1600 0.0063 0.0201 0.179 951.00 34 [1] 34 (7/42) 0.0083 0.2110 0.0266 0.113 1,491.00 0.1270 0.0127 0.072 1,519.00 36 (1) 0.0050 36 (7/44) 0.0064 0.1630 0.0161 0.130 1,322.00 38 (1) 0.0040 0.1000 0.0078 0.072 2,402.00 40 [1] 0.0031 0.0800 0.0050 0.043 3,878.60

The American Wire Gauge (AWG) is based on the principle that the cross-section of the wire changes by 26 % from one gauge number to the next. The AWG numbers decrease as the wire diameter increases, while the AWG numbers increase as the wire diameter decreases. This only applies to solid wire.

However, stranded wire is predominately used in practice. This has the advantage of a longer service life under bending and vibration as well as greater flexibility in comparison with solid wire.

Stranded wires are made of multiple, smaller-gauge wires (higher AWG number). The stranded wire then receives the AWG numbers of a solid wire with the next closest cross-section to that of the stranded wire. In this case, the cross-section of the stranded wire refers to the sum of the copper cross-sections of the individual wires.

Accordingly, strands with the same AWG number but different numbers of wires differ in cross-section. For instance, an AWG 20 strand of 7 AWG 28 wires has a cross-section of 0.563 mm², while an AWG 20 strand of 19 AWG 32 wires has a cross-section of 0.616 mm².

OPERATING VOLTAGE

EIA-364-20D:2008 (SAE AS 13441:2004 method 3001.1).

The values specified in the catalogue correspond to SAE AS 13441:2004 method 3001.1. The table values were determined according to EIA 364-20D:2008. The inserts were tested while mated, and the test current was applied to the pin insert.

75 % of the dielectric withstanding voltage is used for the further calculation. The operating voltage is 1/3 of this value.

All tests were conducted at normal indoor climate and apply up to an altitude of 2,000 m. If there are any deviations, the derating factors are to be factored in according to the applicable standards.

Test voltage: Dielectric withstanding voltage × 0.75 Operating voltage: Dielectric withstanding voltage × 0.75 × 0.33

ATTENTION:

With certain applications, the safety requirements for electrical devices are very strict in terms of operating voltage. In such cases, the operating voltage is defined according to the clearance and creepage distances between parts which could be touched.

When selecting such a connector, please contact us and let us know the safety standard which the product must meet.

Source: Gore & Associates, Pleinfeld

42 [1]

44(1)

0.0028

0.0021

0.0700

0.0540

0.0038

0.0023

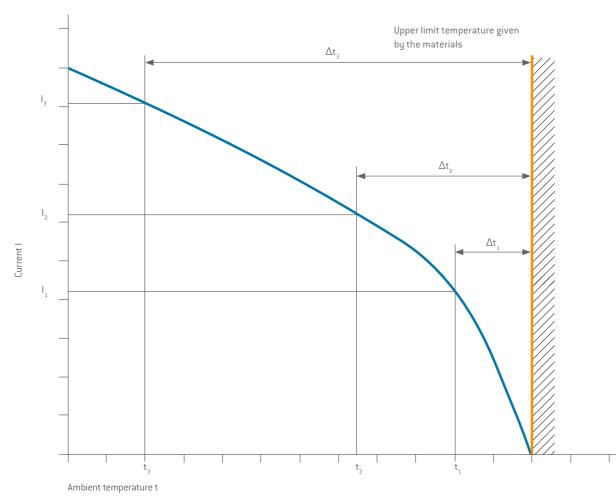
0.028

0.018

5,964.00

8,660.00

TECHNICAL INFORMATION



BASE FOR CURRENT-CARRYING CAPACITY

Derating measurement procedure IEC 60512-5-2:2002 (DIN EN 60512-5-2:2003).

STRUCTURE OF THE BASE CURRENT-CARRYING CAPACITY CURVE

A current-carrying capacity curve metrologically determined according to the method described in IEC 60512-5-2:2002 (DIN EN 60512-5-2:2003) depending on the permissible limit temperature of the materials.

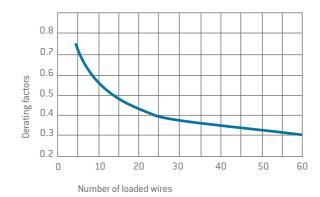
The current-carrying capacity of a connector is determined by measurement. It is determined taking self-heating by Joule heat and the ambient temperature into account, and is limited by the thermal properties of the contact materials used. Their upper limit temperature may not be exceeded in the process.

The relationship between current, the resulting temperature increase, conditioned by the dissipation loss at the contact resistance, and the ambient temperature is represented in a curve. The curve is plotted in a linear coordinate system with current "I" as Y-axis and temperature "t" as X-axis. The upper limiting temperature forms the limit of the diagram.

Over three measurements, the temperature rise due to Joule heat (Δt) is measured respectively for different currents on minimum three connectors, and the resulting values are joined to produce the parabolic basic curve. The basic curve is then used to derive the corrected current-carrying capacity curve (derating curve). The safety factor ($0.8 \times In$) also makes allowance for factors such as manufacturing tolerances and uncertainties in temperature measurement or the measuring arrangement.

CURRENT LOAD

(In dependence on VDE 0276-1000:1995).


RATED CURRENT (NOMINAL CURRENT)

The metrologically determined current which is permitted to flow continuously through all contacts at the same time and will increase the contact temperature by 45 Kelvin. The amperage is determined according to the derating measurement method (DIN EN 60512-5-2:2003) and derived from the derating curve. The values specified in the catalogue apply to either individual contacts or completely assembled inserts/modules, as indicated.

DERATING FACTORS

In the case of multi-position connectors and cables, heating is greater than with individual contacts. It is therefore calculated with a derating factor.

There are no direct regulations for connectors in this context. The derating factors for multi-core cables pursuant to VDE 0298-4:2013 are applied. The derating factor assumes relevance as of 5 live wires.

Example:

VA cable with 24 wires is used (24 contacts). The nominal cross-section of a wire is 6 mm². A derating factor of 0.4 (e.g. cable installed in the open air) is to be presumed for the load reduction depending upon the number of live cable wires. A 6 mm² Cu line (contact diameter 3.0 mm) can be used according to current-carrying capacity with 39 ampere. The 24 contacts plug can thus be loaded with a max. of 15.6 A / contact $(0.4 \times 39 \text{ A})$.

NOTE

Designs may differ depending upon the wiring of the modules and be verified with a heating test.

MAX. CONTINUOUS CURRENT

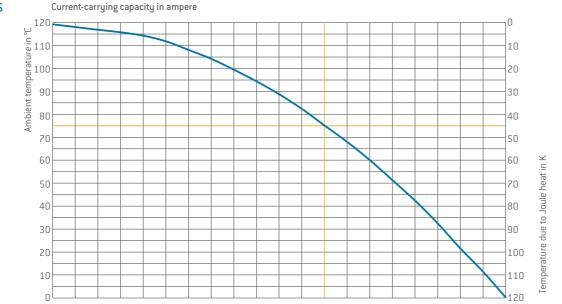
The measured amperage at room temperature (approx. 20 °C) which increases the contact temperature to the limit temperature. The values specified in the catalogue apply to either individual contacts or completely assembled inserts/modules, as indicated.

Number of loaded wires	Derating factor
5	0.75
7	0.65
10	0.55
14	0.5
19	0.45
24	0.4
40	0.35
61	0.3

Load and derating factors

Multi-core plastic cable with conductor cross-section of 1.5 to 10 $\rm mm^2$ when installed in the open air.

CURRENT-CARRYING CAPACITY DIAGRAM


CURRENT-CARRYING CAPACITY DIAGRAM

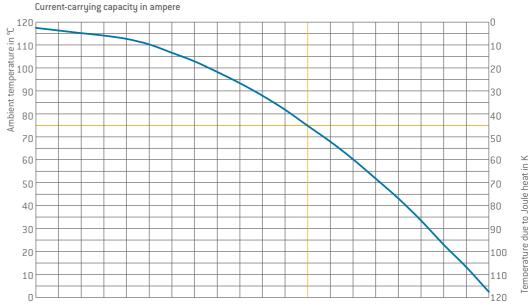
FOR SINGLE CONTACTS

Measurement made in acc. with IEC 60512-5-2:2002 (DIN EN 60512-5-2:2003) (derived base curve shown = 0.8 × Base curve).

Upper limit temperature: +120°C.

Termination with nominal cross-section.

Contact	Contact Ø	Termination cross-section mm ²	T								I												
	0.76	0.25	0		1		2		3		4		5		6		7		8		9		10
		0.38	0	- I	1.5	Т	2.5	1	3.5	Т	5	Т	6	Т	7.5	Т	8.5	Т	9.5	Т	11	1	12
	1.02	0.25	0		1		2		3		4		5		6		7		8		9		10
		0.5	0	1	1.5	Т	3	Т	4.5	Т	6	Т	7.5	Т	9	Т	10.5	Т	12	Т	13.5	1	14.5
		0.25	0		1		2		3		4		5		6		7		8		9		10
		0.5	0	1	1.5	Т	3.5	1	5	Т	6.5	Т	8	Т	10	Т	11.5	Т	13	Т	15	Т	16.5
	1.5	1	0		2.5		5		7.5		10		12.5		15		17.5		19.5		22.5		24.5
		AWG 16	0	T	3	Т	6	Т	9	Т	12	Т	15	Т	18	Т	21	Т	24	Т	27	1	29.5
		1.5	0		3		6		9		12		15		18		21		24		27		29.5
	2.41	0.5	0	1	1.5	Т	3.5	1	5	Т	7	Т	8.5	Т	10.5	Т	12	Т	13.5	Т	15.5	Т	17.5
ODU SPRINGTAC®		1	0		2.5		5.5		8		10.5		13		16		18.5		21		23.5		26
		1.5	0	I	3	Т	6	Т	9	Т	12	Т	15	Т	18	Т	21	Т	24	Т	27	Т	30
		2.5	0		4		8		12		16		20		24		27.5		31.5		35.5		39
		AWG 12	0	1	4.5	Т	9	1	13.5	Т	18.5	Т	23	Т	28	Т	32	Т	36.5	Т	41	Т	45
	3	0.5	0		2		4		5.5		7.5		9.5		11.5		13		15		17		18.5
		1	0	T	2.5	Т	5.5	Т	8	Т	11	Т	13.5	Т	16.5	Т	19	Т	21.5	Т	24.5	Т	27
		1.5	0		3		6		9		12		15.5		19		22		25		28		31
		2.5	0	I	4	Т	8	1	12	Т	16	Т	20	Т	25	Т	29	Т	33	Т	37	Т	41
		4	0		6		13		19		25		32		39		45		51		58		64
		6	0	- I	6	Т	13	1	19	Т	25	Т	32	Т	39	Т	45	Т	51	Т	58	1	64
	5	4	0		6		13		19		25		32		39		45		51		58		64
		10	0	1	11	Т	21	Т	32	Т	42	Т	53	Т	65	Т	75	Т	85	Т	97	Т	106
		16	0		13		26		39		52		65		80		93		106		119		130
	_	16	0	- I	12.5	Т	25	Т	37	Т	49	Т	62	Т	75	Т	87	Т	99	Т	111	Т	123
	8	25	0		18		36		52		68		84		100		114		128		142		155
	0	16	0	1	15	Т	29	1	44	Т	59	- I	74	Т	90	- I	104	I.	118	Т	133	1	147
	8	25	0		17		34		52		69		87		105		121		137		154		171
odu lamtac®	10	25	0	- I	18	Т	36	1	54	Т	72	I	90	Т	110	Т	127	Т	144	Т	163	1	180
-AM	10	35	0		20		39		59		79		99		120		139		158		179		196
100		25	0	I	19	I	38	Т	57	Т	75	I	95	I	115	I	133	I	152	Т	172	Т	188
10	12	35	0		22		44		66		89		111		135		156		178		200		220
		50	0	I	24	Т	48	Т	72	Т	96	Т	120	Т	145	Т	170	Т	195	1	220	Т	240


FOR FULLY EQUIPPED MODULES

Measurement made in acc. with IEC 60512-5-2:2002 (DIN EN 60512-5-2:2003) (derived base curve shown = 0.8 × Base curve). Upper limit temperature: +120°C.

Termination with nominal cross-section.

The values of the 4 contact high voltage module correspond to the values of the 5 contacts signal module.

The values of the 3 contacts power module (page <u>92</u>) correspond to the values of the 3 contacts power module (page <u>90</u>).

Contact	Module	Contact Ø	Termination cross-section mm ²	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I.
	10 con-	0.76	0.25	0		1		2		3		3.5		4		5		6		7		8		8.5
	tacts		0.38	0	Т	1	Т	2	Т	3	1	4	Т	5	Т	6	Т	7	Т	8	Т	9	Т	10
	6 con-	1.02	0.25	0		1		2		3		4		5		6		7		8		9		10
	tacts		0.5	0	- I	1.5	Т	3	Т	4.5	Т	6	Т	7	Т	8	Т	9.5	Т	11	Т	12.5	Т	14
	14 con-	4 con- 1.02	0.25	0		1		2		3		3.5		4.5		5		6		7		8		9
	tacts	1.02	0.5	0	I	1.5	Т	2.5	Т	4	Т	5	Т	6	Т	7	Т	8.5	Т	9.5	Т	11	- I	12
			0.25	0		1		2		3		4		5		6		7		8		9		10
	5 con-	1.5	0.5	0	Ι	1.5	Ι	2.5	I	4	Т	5	Ι	6.5	Т	8	Ι	9	Т	10.5	I	11.5	I	13
	tacts		1	0		2		4.5		6.5		9		11		13		15		17.5		20		22
			AWG 16	0	I	2.5	Ι	5	I	7.5	Т	10	Ι	12.5	Т	14.5	Ι	17.5	Т	20		22.5	I	25
0			1.5	0		2.5		5		7.5			20		22.5		25							
ODU SPRINGTAC®	AC		0.5	0	I	1.5	I	3	I	4	- I	5.5	I	7	I.	8	I	9.5	T	11	I	12.5	I	14
NG1	4 con-		1	0		2.5		5		7		9		11		13		15.5		18		20.5		23
PRI	tacts	2.41	1.5	0	I	2.5	- I	5	I	7.5	- I	10	I	12.5	- I	15	I	18	- I	21	I	24	I	27
II S			2.5	0		3.5		7		10		13		16		19		22.5		26		29.5	29.5 33	
0			AWG 12	0	I	4	I	8	I	12.5	- I	16.5	I	20.5	T	25	I	29	T	33	T	37	I	41
			0.5	0		2		3.5		5		6.5		8		9.5		10.5		12		13		14.5
			1	0	I	2.5	I	5	I	7	- I	9.5	I	12	I.	14	I	16.5	T	19	I	21.5	I	24
	3 con-	3	1.5	0		2.5		5.5		8		11		13.5		16		19		21.5		24.5		27
	tacts		2.5	0	I	3.5	I	7	I	10.5	I	14	I	17.5	I	21	I	25	I	29	I	33	I	37
			4	0		5		10		15		20		25		30		35.5		41		46.5		52
			6	0	I	5	I	10	I	15	I	20	I	25	I	30	I	35.5	I	41	I	46.5	I	52
	2 con-		4	0		5.5		11		17		22.5		28		34		39.5		45		50.5		56
	tacts	5	10	0	I	9.5	I	19	I	28	I	37.5	I	47	1	56.5	I	66	I	75	I	84.5	I	94
			16	0		11.5		23		34.5		46		58		70		81		92		103		114
	2 con-	8	16	0	1	11.5	I	23	I	34	I	46	1	58	I	70	1	81	I	92	1	103	I	114
	tacts		25	0		16		32		48		64		79		95		109		124		138		152
ODU LAMTAC®	2 con-	8	16	0	I	14	I	28	I	42	I	55.5	I	70	I	85	I	98	I	111	T	126	I	139
LAMIAC	tacts		25	0		16		33		49		65		82	N.	100 ninal curi		116		132		149 k. contin		164

166

\leq
.⊆
heat
Joule
to
due
Temperature

167

LINE CURRENT LOAD

The current-carrying capacity of the individual conductors is frequently lower than that of the individual contacts used. When determining the maximum current-carrying capacity, the lowest value is always to be taken into account.

Laying procedure	Exposed in air	or on surfaces									
	Single-wire lines PVC, PE, PUR, TPE heat resistant	Multi-wire high for hand-held dev cold-resistant	Multi-wire movable lines PVC, PE, PUR, TPE standard program harmonised series								
Number of loaded wires	1	2	3	4							
Nominal cross-section copper conductor in mm ²	Current load in A										
0.141	3			2							
0.251	5			4							
0.341	8			6							
0.51	12	3	3	9							
0.75	15	6	6	12							
1	19	10	10	15							
1.5	24	16	16	18							
2.5	32	25	20	26							
4	42	32	25	34							
6	54	40		44							
10	73	63		61							
16	98			82							
25	129			108							
35	158			135							
50	198			168							
Current load acc. to:		VDE 0298-4:2	2013 table 11								

Carrying capacity of cables with a rated voltage of up to 1,000 V and of heat resistant cables. The specification of data does not release one from the need to conduct the test. The original standards remain authoritative for all of the listed technical specifications.

TECHNICAL TERMS

AMBIENT TEMPERATURE

Temperature of the air or other medium in which a piece of equipment is intended to be used in. (IEC 44/709/CDV:2014 (VDE 0113-1:2014)).

AWG

American Wire Gauge – see page <u>162</u>.

BASE CURVE

See page <u>164</u>.

CHEMICAL RESISTANCE

Many secondary processing procedures use adhesives, cleaning agents or other chemicals on our products. Contact with unsuitable chemicals may have an adverse effect on the mechanical and electrical properties of the insulation and housing materials which specified properties may not be able to withstand. Please observe our processing suggestions and technical instructions in this catalogue.

CLEARANCE DISTANCE

The insulation coordination is explained in detail from page 159.

CONNECTORS

Also known as connectors without contact rating (COC): (IEC 61984:2008 (VDE 0627:2009)). An element which enables electrical conductors to be connected and is intended to create and/or separate connections with a suitable counterpart.

CONTACT RESISTANCE

Total resistance value measured from terminal to terminal. In this case, the resistance is significantly lower than the contact resistance. The specifications are average values.

CORES

Electrical conductor, solid wire or multi-wire strand, with insulation as well as any conductive layers. Cables or leads may have one or more cores.

CREEPAGE DISTANCES

The insulation coordination is explained in detail from page 161.

¹DIN VDE 0891-1:1990.

CRIMP BARREL

A terminal sleeve which can accommodate one or more conductors and be crimped by a crimping tool.

CRIMP CONNECTION (CRIMP TERMINATION)

The permanent, non-detachable and solder-free mounting of a contact to a conductor via deforming or shaping under pressure to make a good electrical and mechanical connection. Executed with crimping tool, press or automatic crimping machine (see page <u>146</u>).

CRIMP TERMINATION

Termination technology, see crimp connection.

CRIMPING AREA

The specified area of the crimp barrel in which the crimp termination is executed by means of deforming or shaping the barrel under pressure around the conductor.

CURRENT-CARRYING CAPACITY (NOMINAL CURRENT AND MAXIMUM CONTINUOUS CURRENT)

The data relates to adequately dimensioned connection cable in accordance with IEC 60228:2004 (VDE 0295:2005; class 5), so that no significant temperature increase here. The indicated temperature increase takes place through the contact. The specifications are average values.

DEGREE OF POLLUTION

The insulation coordination is explained in detail from page 159.

DELIVERY FORM

Connectors can be delivered in assembled form or as individual parts.

DERATING CURVE

See page <u>164</u>.

DERATING FACTOR

According to VDE 0298-4:2013, with connectors and cables over 5 contacts, the heating is greater than it is with individual contacts. For that reason, the aforementioned standard is calculated with a derating factor.

TECHNICAL TERMS

DERATING MEASUREMENT METHOD IEC 60512-5-2:2002 (DIN EN 60512-5-2:2003)

See page <u>164</u>.

INSULATOR

Part of a connector which separates conductive parts with different potentials from one another; usually identical to the contact body.

KEYING (ORIENTATION)

Arrangement with which differing polarization of otherwise identical connectors prevents interchangeability. This is a good idea if two or more identical connectors are attached to the same device (see also compatible connectors, see page 68).

MATERIALS (STANDARD DESIGN)

Pins and bodys of the sockets are manufactured from a CuZn alloy and silver or gold-plated. The lamellas consist of a CuBe alloy and are also silver or gold-plated. The springwire contact wires consist of a CuSn alloy and are also silver or gold-plated.

MATING AND SLIDING FORCE (UNMATING FORCE)

The force required to fully insert or withdraw pluggable elements without the influence of a coupling or locking device. The higher value of the mating force is caused by the "attachment peak". Subsequently, only the pure sliding force has an effect. In the case of lamella contacts, the data refers to contacts in the lubricated state (status at delivery) and after approx. 30 mating cycles. The forces are/may be higher in new condition (lubricated). In the case of springwire contacts, the data refers to contacts in new condition. The data represents average values with a potential fluctuation of \pm 50 %.

MATING CYCLES

Mechanical actuation of connectors by mating and sliding. A mating cycle consists of one mating and sliding action. 5,000 mating cycles are the standard value for ODU TURNTAC contacts; 10,000 mating cycles for lamella contacts; 50,000 mating cycles for flat sockets and 100,000 mating cycles for springwire contacts. These values only apply under the following circumstances: clean environment, appropriate radial guidance, impeccable counterpins.

MAX. CONTINUOUS CURRENT

The metrologically determined amperage at room temperature (approx. 20° C) which increases the contact temperature to the limit temperature. The values specified in the catalogue apply to either individual contacts or completely assembled inserts / modules, as indicated.

NOMINAL CURRENT

IEC 60512-5-2:2002 (DIN EN 60512-5-2:2003)

See rated current.

NOMINAL SINGLE CONTACT CURRENT LOAD

The current-carrying capacity which each individual contact can be loaded with on its own (see from page <u>164</u>).

NOMINAL VOLTAGE

The voltage which the manufacturer specifies for a connector and which the operating and performance features relate to.

OPERATING TEMPERATURE FOR ODU-MAC $^{\circ}$

See uppermost limit temperature (see page <u>170</u>). Single modules may differ from the indicated temperature values. Here you find the technical information on the appropriate pages.

PCB TERMINATION

Production of a conductive connection between the PCB and an element in through-hole assembly, THT (through-hole technology).

RATED CURRENT (NOMINAL CURRENT)

See page <u>165</u>.

RATED VOLTAGE

According to IEC 60664-1:2007 (VDE 0110-1:2008) standard "Value of a voltage which is specified by the manufacturer for a component, device or operating medium and relates to the operating and performance features."

SOLDER CONNECTION (SOLDER TERMINATION)

Termination technology in which a molten additional metal (solder) with a lower melting point than the base materials to be connected is used to attach two metallic materials to one another.

TECHNICAL TERMS

SOLDER TERMINATION

Termination technology, see solder connection.

SPINDLE LOCKING

Locking of two halves of a connector pair by one or more screws, which are generally fluted or have a toggle for easier activation.

TERMINATION CROSS-SECTION

The specified cross-sections correspond to a "fine-wire" conductor structure pursuant to IEC 60228:2004 (VDE 0295:2005; Class 5) or a "fine-wire" conductor structure (7/19 wire) according to AWG (ASTM B258-14).

TERMINATION TECHNOLOGIES

Methods for connecting the leads to the electro-mechanical element, such as solder-free connections pursuant to IEC 60352 (DIN EN 60352): crimp, screw connection etc. or soldering connection (see page <u>146</u>).

TIGHTNESS IEC 60529:2013 (VDE 0470-1:2014)

See protection types on page 158.

UPPERMOST LIMIT TEMPERATURE

The maximum permissible temperature at which a connector may be operated. It includes contact heating through currentcarrying capacity. With contacts with standard springwire, it amounts to +120° C, with contacts with standard lamella +150° C. Please consult ODU for high-temperature applications.

WIRE

Wires (solid conductors) are available with an insulator sleeve and/or electrical shielding. Cables or conductors may be made up of one or more wires.

GENERAL NOTE

The connectors listed in this catalogue are intended for use in high voltage and frequency ranges. Suitable precautionary measures must be taken to ensure that people do not come into contact with live conductors during installation and operation. All entries in this catalogue were thoroughly reviewed before printing. ODU reserves the right to make changes based on the current state of knowledge without prior notice without being obliged to provide replacement deliveries or refinements of older designs.

A PERFECT ALLIANCE.

ODU GROUP WORLDWIDE

HEADQUARTERS

DDU GmbH & Co. KG Pregelstraße 11 84453 Mühldorf a. Inn Germany Phone: +49 8631 6156 - 0

Phone: +49 8631 6156 - 0 Fax: +49 8631 6156 - 49 E-Mail: zentral@odu.de

SALES SUBSIDIARIES

DDU Denmark ApS Phone: +45 2233 5335 E-Mail: odu.denmark@odu.de www.odu-denmark.dk

DDU France SARL Phone: +33 1 3935 - 4690 E-Mail: odu@odu.fr www.odu.fr

ODU Italia S.R.L. Phone: +39 331 8708847 E-Mail: sales@odu-italia.it www.odu-italia.it **ODU Japan K.K.** E-Mail: sales@odu.co.jp www.odu-japan.co.jp

DDU Skandinavia AB Phone: +46 176 18261 E-Mail: sales@odu.se www.odu.se

ODU (Shanghai) International Trading Co., Ltd. Phone: +86 21 58347828 - 0 E-Mail: oduchina@odu.com.cn www.odu.com.cn ODU-UK Ltd. Phone: +44 1509 266433 E-Mail: sales@odu-uk.co.uk www.odu-uk.co.uk

DDU-USA Inc. Phone: +1 805 4840540 E-Mail: sales@odu-usa.com www.odu-usa.com

Further information and specialised representatives can be found at: www.odu.de/sales

GRASWALD . HEILIGTAG | Passau

ODU-MAC°

The right is reserved to modify product and technical data.

0DU-MAC / B / 1015 / E

Simply scan QR-Code for the complete download of this brochure.